首頁 資料庫 mysql教程 [转] INSERT INTO ... SELECT Performance with Innodb tables_MySQL

[转] INSERT INTO ... SELECT Performance with Innodb tables_MySQL

Jun 01, 2016 pm 01:51 PM

Author: peter
url: http://www.mysqlperformanceblog.com/2006/07/12/insert-into-select-performance-with-innodb-tables/


Everyone using Innodb tables probably got use to the fact Innodb tables perform non locking reads, meaning unless you use some modifiers such as LOCK IN SHARE MODE or FOR UPDATE, SELECT statements will not lock any rows while running.

This is generally correct, however there a notable exception - INSERT INTO table1 SELECT * FROM table2. This statement will perform locking read (shared locks) for table2 table. It also applies to similar tables with where clause and joins. It is important for tables which is being read to be Innodb - even if writes are done in MyISAM table.

So why was this done, being pretty bad for MySQL Performance and concurrency ? The reason is - replication. In MySQL before 5.1 replication is statement based which means statements replied on the master should cause the same effect as on the slave. If Innodb would not locking rows in source table other transaction could modify the row and commit before transaction which is running INSERT .. SELECT statement. This would make this transaction to be applied on the slave before INSERT... SELECT statement and possibly result in different data than on master. Locking rows in the source table while reading them protects from this effect as other transaction modifies rows before INSERT ... SELECT had chance to access it it will also be modified in the same order on the slave. If transaction tries to modify the row after it was accessed and so locked by INSERT ... SELECT, transaction will have to wait until statement is completed to make sure it will be executed on the slave in proper order. Gets pretty complicated ? Well all you need to know it had to be done fore replication to work right in MySQL before 5.1.

In MySQL 5.1 this as well as few other problems should be solved by row based replication. I'm however yet to give it real stress tests to see how well it performs :)

One more thing to keep into account - INSERT ... SELECT actually performs read in locking mode and so partially bypasses versioning and retrieves latest committed row. So even if you're operation in REPEATABLE-READ mode, this operation will be performed in READ-COMMITTED mode, potentially giving different result compared to what pure SELECT would give. This by the way applies to SELECT .. LOCK IN SHARE MODE and SELECT ... FOR UPDATE as well.

One my ask what is if I'm not using replication and have my binary log disabled ? If replication is not used you can enable innodb_locks_unsafe_for_binlog option, which will relax locks which Innodb sets on statement execution, which generally gives better concurrency. However as the name says it makes locks unsafe fore replication and point in time recovery, so use innodb_locks_unsafe_for_binlog option with caution.

Note disabling binary logs is not enough to trigger relaxed locks. You have to set innodb_locks_unsafe_for_binlog=1 as well. This is done so enabling binary log does not cause unexpected changes in locking behavior and performance problems. You also can use this option with replication sometimes, if you really know what you're doing. I would not recommend it unless it is really needed as you might not know which other locks will be relaxed in future versions and how it would affect your replication.

So what are safe workarounds if you're using replication ?

The most general one is to use: PLAIN TEXT SQL:

  1. SELECT * FROM tbl1 INFO OUTFILE '/tmp/tbl1.txt';
  2. LOAD DATA INFILE '/tmp/tbl1.txt' INTO TABLE tbl2;

instead of: PLAIN TEXT SQL:

  1. INSERT INTO tbl2 SELECT * FROM tbl1;

INSERT ... INTO OUTFILE does not have to set extra locks.

If you use this aproach make sure to delete file after it is loaded back (it has to be done outside of MySQL Server) as otherwise the script will fail second time.

If you need result to be even closer to one of INSERT ... SELECT you may execute this transaction in READ-COMMITTED isolation mode.

Other workarounds are less general purpose. For example if you're doing batch processing which is well indexed you might chop transactions and process rows by small bulks, which do not cause long enough locks to cause the problems.

To complete this article I should show how wait caused by this statement will look in SHOW INNODB STATUS:

<pre class="brush:php;toolbar:false">TRANSACTION 0 42304626, ACTIVE 14 sec, process no 29895, OS thread id 2894768 updating or deleting<br />mysql tables in use 1, locked 1<br />LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 1<br />MySQL thread id 1794760, query id 6994946 localhost root Updating<br />update sample set j=0 where i=5<br />TRX HAS BEEN WAITING 14 SEC FOR THIS LOCK TO BE GRANTED:<br />RECORD LOCKS space id 0 page no 33504 n bits 328 index `j` of table `test/sample` trx id 0 42304626 lock_mode X locks rec but not gap waiting<br />Record lock, heap no 180 PHYSICAL RECORD: n_fields 2; compact format; info bits 0<br />0: len 30; hex 306338386465646233353863643936633930363962373361353736383261; asc 0c88dedb358cd96c9069b73a57682a;...(truncated); 1: len 4; hex 00000005; asc ;;<br /><br />TRANSACTION 0 42304624, ACTIVE 37 sec, process no 29895, OS thread id 4058032 fetching rows, thread declared inside InnoDB 3<br />mysql tables in use 1, locked 1<br />2539 lock struct(s), heap size 224576<br />MySQL thread id 1794751, query id 6994931 localhost root Sending data<br />insert into test select * from sample
登入後複製

As you can see INSERT... SELECT has a lot of lock structs, which means it has locked a lot of rows. "fetching rows" of course means it is still going. In this case write is done to MyISAM table so we'll not see any write activity.

Other transaction which happes to be simple primary key update is waiting on sample table for this record to be unlocked.


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
MySQL的角色:Web應用程序中的數據庫 MySQL的角色:Web應用程序中的數據庫 Apr 17, 2025 am 12:23 AM

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

說明InnoDB重做日誌和撤消日誌的作用。 說明InnoDB重做日誌和撤消日誌的作用。 Apr 15, 2025 am 12:16 AM

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

MySQL:世界上最受歡迎的數據庫的簡介 MySQL:世界上最受歡迎的數據庫的簡介 Apr 12, 2025 am 12:18 AM

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL的位置:數據庫和編程 MySQL的位置:數據庫和編程 Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

為什麼要使用mysql?利益和優勢 為什麼要使用mysql?利益和優勢 Apr 12, 2025 am 12:17 AM

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

MySQL與其他編程語言:一種比較 MySQL與其他編程語言:一種比較 Apr 19, 2025 am 12:22 AM

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL:從小型企業到大型企業 MySQL:從小型企業到大型企業 Apr 13, 2025 am 12:17 AM

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

MySQL索引基數如何影響查詢性能? MySQL索引基數如何影響查詢性能? Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

See all articles