保真度高達~98%,廣工大「AI+光學」研究登Nature子刊,深度學習賦能非正交光復用

在光復用中,通道之間的正交性扮演著至關重要的角色。這種正交性確保了不同通道之間的訊號不會相互幹擾,從而實現了高效的資料傳輸。光復用系統能夠同時傳輸多個通道的數據,有效提高了光纖的利用率。然而,這種系統也不可避免地會施加複用容量的上限。
在此,廣東工業大學通感融合光子技術教育部重點實驗室開發一種基於深度神經網路的多模光纖(MMF)上的非正交光復用,稱為散斑光場檢索網路(Speckle light field retrieval network,SLRnet),它可以學習包含資訊編碼的多個非正交輸入光場與其對應的單強度輸出之間的複雜映射關係。
透過原理驗證實驗,SLRnet成功解決了MMF上非正交光復用的不適定問題。它能夠利用單發散斑輸出明確地檢索由相同偏振、波長和空間位置介導的多個非正交輸入訊號,保真度高達98%。這項研究為實現高容量光復用利用非正交通道鋪平了道路,是邁向這一目標的重要一步。
這項研究將推動光學和光子學領域的潛在應用,並為資訊科學與技術等更廣泛學科的探索提供新的啟示。
相關研究以《Non-orthogonal optical multiplexing empowered by deep learning》為題,於 2024 年 2 月 21 日發表在《Nature Communications》上。
#光復用問題
重複使用(Multiplexing)是光通訊的基石,其中復用通道之間的物理正交性是大規模編碼訊息傳輸的先決條件。
考慮到多個正交訊號的解復用(Demultiplexing),傳輸矩陣方法(例如 MMF)甚至可以在強散射介質上解決這個問題。
最近,深度學習已廣泛應用於光學和光子學領域,用於光學元件和計算光學的逆向設計。具體來說,深度神經網路已被用來提高多重散射介質上正交復用的效能。
然而,迄今為止,所有報導的複用場景都嚴格依賴多路復用通道之間的物理正交性。目前還沒有嘗試利用深度學習的非線性建模能力來實現 MMF 上的非正交光復用。
不幸的是,即使在單模光纖中由相同偏振或波長介導的非正交通道的複用仍然非常具有挑戰性,這是由於缺乏有效的解復用方法或數位訊號處理負擔過重。因此,開發一種新的方法來解碼非正交輸入通道中編碼的資訊對於最終的光復用至關重要。
基於深度神經網路的 MMF 上的非正交光復用
在此,研究人員證明了在 SLRnet 的支持下可以透過 MMF 實現初步的非正交光復用。
作為概念驗證演示,可以利用非正交輸入通道實現透過MMF 的資訊重複傳輸,包括一般自然場景影像、不相關的隨機二進位資料和不屬於同一類型訓練資料集的影像,有利於實現光資訊的非正交複用傳輸。
透過資料驅動技術在非正交輸入通道和輸出之間建立複雜的關係,訓練有素的深度神經網路只需使用單次輸出強度即可檢索非正交通道的編碼資訊。即使是共享相同偏振、波長和輸入空間區域的非正交複用通道也可以被有效地解碼。
神經網路架構
深度神經網路能夠從MMF 的單一散斑輸出中檢索非正交光復用訊號.由任意偏振組合介導的多個振幅和相位編碼資訊在 MMF 中傳播後可以被 SLRnet 有效地檢索。
如圖 2a 所示,即使是具有相同偏振、波長和輸入空間區域的非正交輸入通道的典型場景也可以被明確解碼。這是透過深度神經網路實現的,其架構如圖 2b 所示,它是根據 MMF 獨特的多重散射過程的 Unet 的變體。它由全連接(FC)層和 ResUnet 組成。
實驗結果
首先考慮 MMF 長度為 1m 的情況。圖 3a 展示了 SLRnet 訓練過程中具有任意偏振態組合的兩個複用光場通道的檢索保真度的演變。總的來說,在振幅和相位維度上將有四個編碼通道,根據偏振狀態,它們可以是非正交的。檢索到的保真度是透過皮爾森相關係數(PCC)來衡量的。
從圖中可以看出,使用相同的 SLRnet 訓練配置檢索到的 PCC 在 100 個 epoch 後的演化大於 0.97。同時,十二個複用場景的檢索保真度的演變基本上相同,這展示了非正交復用對於任意偏振組合的出色穩健性。
此外,圖 3b 提供了分別使用不同的偏振組合在每個幅度和相位復用通道中檢索到的保真度。幅度和相位維度上的平均檢索保真度幾乎相同( ~ 0.98),這凸顯了 SLRnet 對多個非正交輸入通道中編碼的資訊進行解復用的能力。
為了對波前編碼的檢索資訊進行sensory 評估,四種偏振組合(0° 和0°、0° 和10°、0° 和90° 以及0° 和橢圓)的典型解復用結果如圖4 所示。
可以看出,使用相同偏振在輸入波前的振幅和相位上復用的四個灰階影像可以利用單次散斑輸出有效地解復用。在不同偏振組合下檢索到的其他結果的保真度相似,這表明即使編碼波前被 MMF 擾亂,SLRnet 也能夠實現前所未有的非正交輸入通道復用。
為了進一步鞏固 SLRnet 在更現實的場景中的優越性,提出了在 50 m MMF 上使用相同偏振態的非正交光復用結果,如圖 5 所示。從圖 4 和圖 5 可以看出,1 m MMF 的解復用結果比 50 m 情況要好,這是因為較長的 MMF 的散射特性更容易受到環境的影響。透過優化網路結構可以進一步提高解復用效能。研究表明,SLRnet 是 MMF 中復用非正交通道的有效手段。
最後,展示 SLRnet 對於不同影像集的通用性,研究顯示 SLRnet 具有良好的泛化性。
儘管現階段所提出的基於MMF 的非正交光復用概念不能直接用於通常需要統一保真度的醫療診斷,但高精度的非相關二進制數字信息的非正交復用表明,透過MMF 實現光資訊的非正交復用傳輸向前邁進了一步。
該研究不僅可以為利用高吞吐量MMF 進行通訊和資訊處理鋪平道路,而且還可能為光學及其他領域的光復用提供範式轉變,這可以大大提高光學系統的自由度和容量。
以上是保真度高達~98%,廣工大「AI+光學」研究登Nature子刊,深度學習賦能非正交光復用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

在現代製造業中,精準的缺陷檢測不僅是確保產品品質的關鍵,更是提升生產效率的核心。然而,現有的缺陷檢測資料集常常缺乏實際應用所需的精確度和語意豐富性,導致模型無法辨識特定的缺陷類別或位置。為了解決這個難題,由香港科技大學廣州和思謀科技組成的頂尖研究團隊,創新地開發了「DefectSpectrum」資料集,為工業缺陷提供了詳盡、語義豐富的大規模標註。如表一所示,相較於其他工業資料集,「DefectSpectrum」資料集提供了最多的缺陷標註(5438張缺陷樣本),最細緻的缺陷分類(125個缺陷類別

寫在前面今天我們探討下深度學習技術如何改善在複雜環境中基於視覺的SLAM(同時定位與地圖建構)表現。透過將深度特徵提取和深度匹配方法相結合,這裡介紹了一種多功能的混合視覺SLAM系統,旨在提高在諸如低光條件、動態光照、弱紋理區域和嚴重抖動等挑戰性場景中的適應性。我們的系統支援多種模式,包括拓展單目、立體、單目-慣性以及立體-慣性配置。除此之外,也分析如何將視覺SLAM與深度學習方法結合,以啟發其他研究。透過在公共資料集和自採樣資料上的廣泛實驗,展示了SL-SLAM在定位精度和追蹤魯棒性方面優

開放LLM社群正是百花齊放、競相爭鳴的時代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等許多表現優良的模型。但是,相較於以GPT-4-Turbo為代表的專有大模型,開放模型在許多領域仍有明顯差距。在通用模型之外,也有一些專精關鍵領域的開放模型已被開發出來,例如用於程式設計和數學的DeepSeek-Coder-V2、用於視覺-語言任務的InternVL

編輯|KX時至今日,晶體學所測定的結構細節和精度,從簡單的金屬到大型膜蛋白,是任何其他方法都無法比擬的。然而,最大的挑戰——所謂的相位問題,仍然是從實驗確定的振幅中檢索相位資訊。丹麥哥本哈根大學研究人員,開發了一種解決晶體相問題的深度學習方法PhAI,利用數百萬人工晶體結構及其相應的合成衍射數據訓練的深度學習神經網絡,可以產生準確的電子密度圖。研究表明,這種基於深度學習的從頭算結構解決方案方法,可以以僅2埃的分辨率解決相位問題,該分辨率僅相當於原子分辨率可用數據的10%到20%,而傳統的從頭算方

對AI來說,奧數不再是問題了。本週四,GoogleDeepMind的人工智慧完成了一項壯舉:用AI做出了今年國際數學奧林匹克競賽IMO的真題,並且距拿金牌僅一步之遙。上週剛結束的IMO競賽共有六道賽題,涉及代數、組合學、幾何和數論。谷歌提出的混合AI系統做對了四道,獲得28分,達到了銀牌水準。本月初,UCLA終身教授陶哲軒剛剛宣傳了百萬美元獎金的AI數學奧林匹克競賽(AIMO進步獎),沒想到7月還沒過,AI的做題水平就進步到了這種水平。 IMO上同步做題,做對了最難題IMO是歷史最悠久、規模最大、最負

2023年,幾乎AI的每個領域都在以前所未有的速度進化,同時,AI也不斷地推動著具身智慧、自動駕駛等關鍵賽道的技術邊界。在多模態趨勢下,Transformer作為AI大模型主流架構的局面是否會撼動?為何探索基於MoE(專家混合)架構的大模型成為業界新趨勢?大型視覺模型(LVM)能否成為通用視覺的新突破? ……我們從過去的半年發布的2023年本站PRO會員通訊中,挑選了10份針對以上領域技術趨勢、產業變革進行深入剖析的專題解讀,助您在新的一年裡為大展宏圖做好準備。本篇解讀來自2023年Week50

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显著提高。这表明,在单个统一的深度学习框架内,可以实现

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答
