目錄
位置編碼的需求
絕對位置編碼
絕對位置編碼的限制
相對位置編碼
相對位置編碼的限制
旋轉位置編碼 (RoPE)?
RoPE 的矩陣公式
总结
首頁 科技週邊 人工智慧 大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

Apr 01, 2024 pm 08:19 PM
自然語言處理 大語言模型 相對定位

自2017年發表的「Attention Is All You Need」論文以來,Transformer架構一直是自然語言處理(NLP)領域的基石。它的設計多年來基本上沒有變化,隨著旋轉位置編碼(RoPE)的引入,2022年標誌著該領域的重大發展。

旋轉位置嵌入是最先進的 NLP 位置嵌入技術。大多數流行的大型語言模型(如 Llama、Llama2、PaLM 和 CodeGen)已經在使用它。在本文中,我們將深入探討什麼是旋轉位置編碼,以及它們如何巧妙地整合絕對位置嵌入和相對位置嵌入的優點。

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

位置編碼的需求

為了理解RoPE 的重要性,我們先回顧為什麼位置編碼至關重要。 Transformer 模型根據其固有的設計,不會考慮輸入標記的順序。

例如,像「the dog chases the pig 」和「the pig chases the dogs」這樣的短語雖然含義不同,但由於它們被視為一組無序的標記,因此被視為無法區分。為了維護序列資訊及其意義,需要一個表示來將位置資訊整合到模型中。

絕對位置編碼

為了對句子中的位置進行編碼,需要使用具有相同維度的向量的另一個工具,其中每個向量代表句子中的一個位置。例如,在句子中的第二個單字指定特定向量。因此,每個句子位置都有其獨特的向量。然後透過將單字嵌入與其對應位置的嵌入結合起來,來形成Transformer層的輸入。

有兩種主要方法來產生這些嵌入:

  1. #從資料中學習:在這裡,位置向量是在訓練過程中學習的,就像其他模型參數一樣。我們為每個位置(例如從 1 到 512)學習一個唯一的向量。這引入了一個限制——最大序列長度受到限制。如果模型僅學習到位置 512,則它無法表示比該位置更長的序列。
  2. 正弦函數:此方法涉及使用正弦函數為每個位置建立唯一的嵌入。儘管這種構造的細節很複雜,但它本質上為序列中的每個位置提供了獨特的位置嵌入。實證研究表明,從數據中學習和使用正弦函數可以在現實世界模型中提供相當的性能。

絕對位置編碼的限制

#儘管使用廣泛但絕對位置嵌入也並非沒有缺點:

  1. #有限序列長度:如上所述,如果模型學習到某個點的位置向量,它本質上不能表示超出該限制的位置。
  2. 位置嵌入的獨立性:每個位置嵌入都是獨立於其他位置嵌入的。這意味著在模型看來,位置 1 和 2 之間的差異與位置 2 和 500 之間的差異相同。但其實位置 1 和 2 應該比位置 500 相關性更密切,位置 500  距離明顯更遠。這種相對定位的缺乏可能會阻礙模型理解語言結構的細微差別的能力。

相對位置編碼

相對位置不是專注於句子中記的絕對位置,而是專注於記對之間的距離。此方法不會直接在詞向量中加入位置向量。而是改變了注意力機制以納入相對位置資訊。

T5(Text-to-Text Transfer Transformer)是利用相對位置嵌入的著名模型。 T5 引入了一種處理位置資訊的微妙方式:

  • 位置偏移的偏差: T5 使用偏差(浮點數)來表示每個可能的位置偏移。例如,偏差 B1 可能表示任意兩個相距一個位置的標記之間的相對距離,無論它們在句子中的絕對位置如何。
  • 自註意力層中的整合:此相對位置偏差矩陣被加入到自註意力層中的查詢矩陣和關鍵矩陣的乘積中。這確保了相同相對距離的標記始終由相同的偏差表示,無論它們在序列中的位置如何。
  • 可擴展性:此方法的一個顯著優點是其可擴展性。它可以擴展到任意長的序列,這比絕對位置嵌入有明顯的優勢。

相對位置編碼的限制

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

#

儘管它們在理論上很有吸引力,但相對位置編碼得問題很嚴重

  1. #計算效率低下:必須創建成對的位置編碼矩陣,然後執行大量張量操作以獲得每個時間步的相對位置編碼。特別是對於較長的序列。這主要是由於自註意力層中的額外計算步驟,其中位置矩陣被添加到查詢鍵矩陣中。
  2. 鍵值快取所使用的複雜性:由於每個附加令牌都會改變每個其他令牌的嵌入,這使得 Transformer 中鍵值快取的有效使用變得複雜。 使用KV 快取的一項要求是已經產生的單字的位置編碼, 在產生新單字時不改變(絕對位置編碼提供)因此相對位置編碼不適合推理,因為每個標記的嵌入會隨著每個新時間步的變化而改變。

由於這些工程複雜性,位置編碼未被廣泛採用,特別是在較大的語言模型中。

旋轉位置編碼 (RoPE)?

RoPE  代表了一種編碼位置資訊的新方法。傳統方法中無論是絕對方法或相對方法,都有其限制。絕對位置編碼為每個位置分配一個唯一的向量,雖然簡單但不能很好地擴展並且無法有效捕獲相對位置;相對位置編碼關注標記之間的距離,增強模型對標記關係的理解,但使模型架構複雜化。

RoPE巧妙地結合了兩者的優點。允許模型理解標記的絕對位置及其相對距離的方式對位置資訊進行編碼。這是透過旋轉機制實現的,其中序列中的每個位置都由嵌入空間中的旋轉表示。 RoPE 的優雅之處在於其簡單性和高效性,這使得模型能夠更好地掌握語言語法和語義的細微差別。

旋轉矩陣源自於我們在高中學到的正弦和餘弦的三角性質,使用二維矩陣應該足以獲得旋轉矩陣的理論,如下所示!

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

我們看到旋轉矩陣保留了原始向量的大小(或長度),如上圖中的「r」所示,唯一改變的是與x軸的角度。

RoPE 引進了一個新穎的概念。它不是添加位置向量,而是對詞向量應用旋轉。旋轉角度 (θ) 與單字在句子中的位置成正比。第一個位置的向量旋轉 θ,第二個位置的向量旋轉 2θ,依此類推。這個方法有幾個好處:

  1. 向量的穩定性:在句子末尾加上標記不會影響開頭單字的向量,有利於高效快取.
  2. 相對位置的保留:如果兩個單字在不同的上下文中保持相同的相對距離,則它們的向量將旋轉相同的量。這確保了角度以及這些向量之間的點積保持恆定

RoPE 的矩陣公式

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

RoPE的技術實作涉及旋轉矩陣。在 2D 情況下,論文中的方程式包含一個旋轉矩陣,該矩陣將向量旋轉 Mθ 角度,其中 M 是句子中的絕對位置。這種旋轉應用於 Transformer 自註意力機制中的查詢向量和鍵向量。

對於更高維度,向量被分成 2D 區塊,並且每對獨立旋轉。這可以被想像成一個在空間中旋轉的 n 維。聽著這個方法好好像實作是複雜,其實不然,這在 PyTorch 等函式庫只需要大約十行程式碼就可以有效率的實作。

import torch import torch.nn as nn  class RotaryPositionalEmbedding(nn.Module): def __init__(self, d_model, max_seq_len): super(RotaryPositionalEmbedding, self).__init__()  # Create a rotation matrix. self.rotation_matrix = torch.zeros(d_model, d_model, device=torch.device("cuda")) for i in range(d_model): for j in range(d_model): self.rotation_matrix[i, j] = torch.cos(i * j * 0.01)  # Create a positional embedding matrix. self.positional_embedding = torch.zeros(max_seq_len, d_model, device=torch.device("cuda")) for i in range(max_seq_len): for j in range(d_model): self.positional_embedding[i, j] = torch.cos(i * j * 0.01)  def forward(self, x): """Args:x: A tensor of shape (batch_size, seq_len, d_model). Returns:A tensor of shape (batch_size, seq_len, d_model)."""  # Add the positional embedding to the input tensor. x += self.positional_embedding  # Apply the rotation matrix to the input tensor. x = torch.matmul(x, self.rotation_matrix)  return x
登入後複製
#

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

为了旋转是通过简单的向量运算而不是矩阵乘法来执行。距离较近的单词更有可能具有较高的点积,而距离较远的单词则具有较低的点积,这反映了它们在给定上下文中的相对相关性。

大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?

使用 RoPE 对 RoBERTa 和 Performer 等模型进行的实验表明,与正弦嵌入相比,它的训练时间更快。并且该方法在各种架构和训练设置中都很稳健。

最主要的是RoPE是可以外推的,也就是说可以直接处理任意长的问题。在最早的llamacpp项目中就有人通过线性插值RoPE扩张,在推理的时候直接通过线性插值将LLAMA的context由2k拓展到4k,并且性能没有下降,所以这也可以证明RoPE的有效性。

代码如下:

import transformers  old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ def ntk_scaled_init(self, dim, max_position_embeddings=2048, base=10000, device=None): #The method is just these three linesmax_position_embeddings = 16384a = 8 #Alpha valuebase = base * a ** (dim / (dim-2)) #Base change formula old_init(self, dim, max_position_embeddings, base, device)   transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = ntk_scaled_init
登入後複製

总结

旋转位置嵌入代表了 Transformer 架构的范式转变,提供了一种更稳健、直观和可扩展的位置信息编码方式。

RoPE不仅解决了LLM context过长之后引起的上下文无法关联问题,并且还提高了训练和推理的速度。这一进步不仅增强了当前的语言模型,还为 NLP  的未来创新奠定了基础。随着我们不断解开语言和人工智能的复杂性,像 RoPE 这样的方法将有助于构建更先进、更准确、更类人的语言处理系统。

以上是大語言模型中常用的旋轉位置編碼RoPE詳解:為什麼它比絕對或相對位置編碼更好?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

本地使用Groq Llama 3 70B的逐步指南 本地使用Groq Llama 3 70B的逐步指南 Jun 10, 2024 am 09:16 AM

譯者|布加迪審校|重樓本文介紹如何使用GroqLPU推理引擎在JanAI和VSCode中產生超快速反應。每個人都致力於建立更好的大語言模型(LLM),例如Groq專注於AI的基礎設施方面。這些大模型的快速響應是確保這些大模型更快捷響應的關鍵。本教學將介紹GroqLPU解析引擎以及如何在筆記型電腦上使用API​​和JanAI本地存取它。本文也將把它整合到VSCode中,以幫助我們產生程式碼、重構程式碼、輸入文件並產生測試單元。本文將免費創建我們自己的人工智慧程式設計助理。 GroqLPU推理引擎簡介Groq

七個很酷的GenAI & LLM技術性面試問題 七個很酷的GenAI & LLM技術性面試問題 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大模型做時序預測也很強!華人團隊啟動LLM新能力,超越一眾傳統模式實現SOTA 大模型做時序預測也很強!華人團隊啟動LLM新能力,超越一眾傳統模式實現SOTA Apr 11, 2024 am 09:43 AM

大語言模型潛力被激發-無需訓練大語言模型就能實現高精度時序預測,超越一切傳統時序模型。蒙納士大學、螞蟻和IBM研究院共同開發了一個通用框架,成功推動了大語言模型跨模態處理序列資料的能力。該框架已成為一項重要的技術創新。時序預測有益於城市、能源、交通、遙感等典型複雜系統的決策。自此,大模型可望徹底改變時序/時空資料探勘方式。通用大語言模型重編程框架研究團隊提出了一個通用框架,將大語言模型輕鬆用於一般時間序列預測,而無需做任何訓練。主要提出兩大關鍵技術:時序輸入重編程;提示做前綴。 Time-

黏性定位脫離文檔流嗎 黏性定位脫離文檔流嗎 Feb 20, 2024 pm 05:24 PM

黏性定位脫離文件流嗎,需要具體程式碼範例在Web開發中,佈局是一個很重要的主題。其中,定位是一種常用的佈局技術之一。在CSS中,有三種常見的定位方式:靜態定位、相對定位和絕對定位。除了這三種定位方式,還有一種比較特殊的定位方式,就是黏性定位。那麼,黏性定位是否脫離文檔流呢?下面我們就來具體探討一下,並提供一些程式碼範例來幫助理解。首先,我們要先了解什麼是文檔流

在OpenHarmony本地部署大語言模型 在OpenHarmony本地部署大語言模型 Jun 07, 2024 am 10:02 AM

本文將第二屆OpenHarmony技術大會上展示的《在OpenHarmony本地部署大語言模型》成果開源,開源位址:https://gitee.com/openharmony-sig/tpc_c_cplusplus/blob/master/thirdparty/InferLLM/docs/ hap_integrate.md。實作思路與步驟移植輕量級LLM模型推理架構InferLLM到OpenHarmony標準系統,編譯出能在OpenHarmony運作的二進位產物。 InferLLM是個簡單又有效率的L

鴻蒙智行享界S9全場景新品發表會,多款重磅新品齊發 鴻蒙智行享界S9全場景新品發表會,多款重磅新品齊發 Aug 08, 2024 am 07:02 AM

今天下午,鸿蒙智行正式迎来了新品牌与新车。8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕昇激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为

自然語言處理:使電腦理解和處理人類語言 自然語言處理:使電腦理解和處理人類語言 Sep 21, 2023 pm 03:53 PM

自然語言處理(NaturalLanguageProcessing,NLP)是人工智慧領域中一項重要且令人興奮的技術,其目標是使電腦能夠理解、解析和生成人類語言。 NLP的發展已經取得了巨大的進步,使得電腦能夠更好地與人類交互,實現更廣泛的應用。本文將探討自然語言處理的概念、技術、應用以及未來展望自然語言處理的概念自然語言處理是一門研究如何使電腦能夠理解和處理人類語言的學科。人類語言的複雜性和多義性使得電腦在理解和處理上面臨巨大挑戰。 NLP的目標是開發演算法和模型,使電腦能夠從文字中提取訊息

Java 函數在自然語言處理中的應用如何促進對話式互動? Java 函數在自然語言處理中的應用如何促進對話式互動? Apr 30, 2024 am 08:03 AM

Java函數在NLP中廣泛用於建立自訂解決方案,可提升對話式互動的體驗。這些函數可用於文字預處理、情緒分析、意圖識別和實體擷取。例如,透過使用Java函數進行情緒分析,應用程式可以理解使用者的語氣並做出適當回應,從而增強對話式體驗。

See all articles