探索使用對比損失的孿生網路進行影像相似性比較
簡介
在電腦視覺領域,準確地測量影像相似性是一項關鍵任務,具有廣泛的實際應用。從圖像搜尋引擎到人臉辨識系統和基於內容的推薦系統,有效比較和尋找相似圖像的能力非常重要。 Siamese網路與對比損失相結合,為數據驅動方式學習影像相似性提供了強大的框架。 在這篇文章中,我們將深入了解Siamese網路的細節,探討對比損失的概念,並探討這兩個組件如何共同運作以創建一個有效的圖像相似性模型。 首先,Siamese網路由兩個相同的子網路組成,這兩個子網路共享相同的權重和參數。每個子網路將輸入圖像編碼為特徵向量,這些向量捕捉了圖像的關鍵特徵。 然後,我們使用對比損失來度量兩個輸入影像之間的相似性。對比損失基於歐氏距離測量,並採用了一個限制項,以確保同類樣本之間的距離小於不同類樣本之間的距離。 透過反向傳播和最佳化演算法,Siamese網路能夠自動學習特徵表示,使得相似影像的能力非常重要。這種模型的創新之處在於它能夠在訓練集中學習相對較少的樣本,並透過遷移學習將
Siamese神經網路是一類既在比較和測量輸入樣本對之間相似性的神經網路架構。術語「Siamese」源自於網路體系結構包含兩個相同結構且共享相同權重集的孿生神經網路的概念。每個網路處理來自對應的輸入樣本之一,並透過比較它們的輸出來確定它們之間的相似性或不相似性。 在Siamese網路中的每個樣本處理對應輸入樣本的輸入樣本之間的相似性或不相似性。這種相似性度量可以透過比較它們的輸出結果來確定。 Siamese網路通常用於識別和驗證任務,如人臉辨識、指紋辨識和簽章驗證等。它可以自動學習輸入樣本之間的相似性,並根據訓練資料進行決策。 透過Siamese網絡,每個網路處理來自對應的輸入樣本之一,並透過比較它們的輸出來確定它們之間的相似性或不相
- 共享网络:共享网络是Siamese架构的核心组件。它负责从输入样本中提取有意义的特征表示。共享网络包含神经单元的层,例如卷积层或全连接层,用于处理输入数据并生成固定长度的embedding向量。通过在孪生网络之间共享相同的权重,模型学会为相似的输入提取相似的特征,从而实现有效的比较。
- 相似性度:一旦输入由共享网络处理,就会使用相似性度量来比较生成的embedding,并测量两个输入之间的相似性或不相似性。相似度度量的选择取决于特定任务和输入数据的性质。常见的相似性度量包括欧氏距离、余弦相似度或相关系数。相似性度量量化了embedding之间的距离或相关性,并提供了输入样本之间相似性的度量。
- 对比损失函数:为了训练Siamese网络,采用了对比损失函数。对比损失函数鼓励网络为相似的输入生成距离更近的embedding,而为不相似的输入生成距离更远的embedding。当相似对之间的距离超过一定阈值或不相似对之间的距离低于另一个阈值时,对比损失函数对模型进行惩罚。对比损失函数的确切制定取决于所选的相似性度量和相似对与不相似对之间的期望边际。
在训练过程中,Siamese网络学会优化其参数以最小化对比损失,并生成能够有效捕捉输入数据的相似性结构的判别性embedding。
对比损失函数
对比损失是Siamese网络中常用于学习输入样本对之间相似性或不相似性的损失函数。它旨在以这样一种方式优化网络的参数,即相似的输入具有在特征空间中更接近的embedding,而不相似的输入则被推到更远的位置。通过最小化对比损失,网络学会生成能够有效捕捉输入数据的相似性结构的embedding。
为了详细了解对比损失函数,让我们将其分解为其关键组件和步骤:
- 输入对:对比损失函数作用于输入样本对,其中每对包含一个相似或正例和一个不相似或负例。这些对通常在训练过程中生成,其中正例对代表相似实例,而负例对代表不相似实例。
- embedding:Siamese网络通过共享网络处理每个输入样本,为配对中的两个样本生成embedding向量。这些embedding是固定长度的表示,捕捉输入样本的基本特征。
- 距离度量:使用距离度量,如欧氏距离或余弦相似度,来衡量生成的embedding之间的不相似性或相似性。距离度量的选择取决于输入数据的性质和任务的具体要求。
- 对比损失计算:对比损失函数计算每对embedding的损失,鼓励相似对具有更小的距离,而不相似对具有更大的距离。对比损失的一般公式如下:L = (1 — y) * D² + y * max(0, m — D)
其中:
- L:对于一对的对比损失。
- D:embedding之间的距离或不相似性。
- y:标签,指示配对是否相似(相似为0,不相似为1)。
- m:定义不相似性阈值的边际参数。
损失项 `(1 — y) * D²` 对相似对进行惩罚,如果它们的距离超过边际(m),则鼓励网络减小它们的距离。项 `y * max(0, m — D)²` 对不相似对进行惩罚,如果它们的距离低于边际,则推动网络增加它们的距离。
- 损失的汇总:为了获得整个输入对批次的整体对比损失,通常会对所有对之间的个体损失进行平均或求和。汇总方法的选择取决于特定的训练目标和优化策略。
通过通过梯度下降优化方法(例如反向传播和随机梯度下降)最小化对比损失,Siamese网络学会生成能够有效捕捉输入数据的相似性结构的判别性embedding。对比损失函数在训练Siamese网络中发挥着关键作用,使其能够学习可用于各种任务,如图像相似性、人脸验证和文本相似性的有意义表示。对比损失函数的具体制定和参数可以根据数据的特性和任务的要求进行调整。
在 PyTorch 中的孪生神经网络
1. 数据集创建
我们使用的数据集来自来自 :
http://vision.stanford.edu/aditya86/ImageNetDogs/
def copy_files(source_folder,files_list,des):for file in files_list:source_file=os.path.join(source_folder,file)des_file=os.path.join(des,file)shutil.copy2(source_file,des_file)print(f"Copied {file} to {des}")return def move_files(source_folder,des):files_list=os.listdir(source_folder)for file in files_list:source_file=os.path.join(source_folder,file)des_file=os.path.join(des,file)shutil.move(source_file,des_file)print(f"Copied {file} to {des}")return def rename_file(file_path,new_name):directory=os.path.dirname(file_path)new_file_path=os.path.join(directory,new_name)os.rename(file_path,new_file_path)print(f"File renamed to {new_file_path}")returnfolder_path=r"C:\Users\sri.karan\Downloads\images1\Images\*"op_path_similar=r"C:\Users\sri.karan\Downloads\images1\Images\similar_all_images"tmp=r"C:\Users\sri.karan\Downloads\images1\Images\tmp"op_path_dissimilar=r"C:\Users\sri.karan\Downloads\images1\Images\dissimilar_all_images"folders_list=glob.glob(folder_path)folders_list=list(set(folders_list).difference(set(['C:\\Users\\sri.karan\\Downloads\\images1\\Images\\similar_all_images','C:\\Users\\sri.karan\\Downloads\\images1\\Images\\tmp','C:\\Users\\sri.karan\\Downloads\\images1\\Images\\dissimilar_all_images'])))l,g=0,0random.shuffle(folders_list)for i in glob.glob(folder_path):if i in ['C:\\Users\\sri.karan\\Downloads\\images1\\Images\\similar_all_images','C:\\Users\\sri.karan\\Downloads\\images1\\Images\\tmp','C:\\Users\\sri.karan\\Downloads\\images1\\Images\\dissimilar_all_images']:continuefile_name=i.split('\\')[-1].split("-")[1]picked_files=pick_random_files(i,6)copy_files(i,picked_files,tmp)for m in range(3):rename_file(os.path.join(tmp,picked_files[m*2]),"similar_"+str(g)+"_first.jpg")rename_file(os.path.join(tmp,picked_files[m*2+1]),"similar_"+str(g)+"_second.jpg")g+=1move_files(tmp,op_path_similar)choice_one,choice_two=random.choice(range(len(folders_list))),random.choice(range(len(folders_list)))picked_dissimilar_one=pick_random_files(folders_list[choice_one],3)picked_dissimilar_two=pick_random_files(folders_list[choice_two],3)copy_files(folders_list[choice_one],picked_dissimilar_one,tmp)copy_files(folders_list[choice_two],picked_dissimilar_two,tmp)picked_files_dissimilar=picked_dissimilar_one+picked_dissimilar_twofor m in range(3):rename_file(os.path.join(tmp,picked_files_dissimilar[m]),"dissimilar_"+str(l)+"_first.jpg")rename_file(os.path.join(tmp,picked_files_dissimilar[m+3]),"dissimilar_"+str(l)+"_second.jpg")l+=1move_files(tmp,op_path_dissimilar)
我们挑选了3对相似图像(狗品种)和3对不相似图像(狗品种)来微调模型,为了使负样本简单,对于给定的锚定图像(狗品种),任何除地面实况狗品种以外的其他狗品种都被视为负标签。
注意: “相似图像” 意味着来自相同狗品种的图像被视为正对,而“不相似图像” 意味着来自不同狗品种的图像被视为负对。
代码解释:
- 46行:从每个狗图像文件夹中随机挑选了6张图像。
- 47行:选择的图像被移动到一个名为 “tmp” 的文件夹中,并且由于它们来自同一狗品种文件夹,因此被重命名为 “similar_images”。
- 55行:完成所有这些后,它们被移动到 “similar_all_images” 文件夹中。
- 56、57行:类似地,为了获得不相似的图像对,从两个不同的狗品种文件夹中选择了3张图像。
- 然后重复上述流程,以获得不相似的图像对并将它们移动到 “dissimilar_all_images” 文件夹中。
完成所有这些后,我们可以继续创建数据集对象。
import torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import DataLoaderfrom PIL import Imageimport numpy as npimport randomfrom torch.utils.data import DataLoader, Datasetimport torchimport torch.nn as nnfrom torch import optimimport torch.nn.functional as Fclass ImagePairDataset(torch.utils.data.Dataset):def __init__(self, root_dir):self.root_dir = root_dirself.transform = T.Compose([# We first resize the input image to 256x256 and then we take center crop.transforms.Resize((256,256)), transforms.ToTensor()])self.image_pairs = self.load_image_pairs()def __len__(self):return len(self.image_pairs)def __getitem__(self, idx):image1_path, image2_path, label = self.image_pairs[idx]image1 = Image.open(image1_path).convert("RGB")image2 = Image.open(image2_path).convert("RGB")# Convert the tensor to a PIL image# image1 = functional.to_pil_image(image1)# image2 = functional.to_pil_image(image2)image1 = self.transform(image1)image2 = self.transform(image2)# image1 = torch.clamp(image1, 0, 1)# image2 = torch.clamp(image2, 0, 1)return image1, image2, labeldef load_image_pairs(self):image_pairs = []# Assume the directory structure is as follows:# root_dir# ├── similar# │ ├── similar_image1.jpg# │ ├── similar_image2.jpg# │ └── ...# └── dissimilar# ├── dissimilar_image1.jpg# ├── dissimilar_image2.jpg# └── ...similar_dir = os.path.join(self.root_dir, "similar_all_images")dissimilar_dir = os.path.join(self.root_dir, "dissimilar_all_images")# Load similar image pairs with label 1similar_images = os.listdir(similar_dir)for i in range(len(similar_images) // 2):image1_path = os.path.join(similar_dir, f"similar_{i}_first.jpg")image2_path = os.path.join(similar_dir, f"similar_{i}_second.jpg")image_pairs.append((image1_path, image2_path, 0))# Load dissimilar image pairs with label 0dissimilar_images = os.listdir(dissimilar_dir)for i in range(len(dissimilar_images) // 2):image1_path = os.path.join(dissimilar_dir, f"dissimilar_{i}_first.jpg")image2_path = os.path.join(dissimilar_dir, f"dissimilar_{i}_second.jpg")image_pairs.append((image1_path, image2_path, 1))return image_pairsdataset = ImagePairDataset(r"/home/niq/hcsr2001/data/image_similarity")train_size = int(0.8 * len(dataset))test_size = len(dataset) - train_sizetrain_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])batch_size = 32train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
在上述代码的第8到10行:对图像进行预处理,包括将图像调整大小为256。我们使用批量大小为32,这取决于您的计算能力和 GPU。
#create the Siamese Neural Networkclass SiameseNetwork(nn.Module):def __init__(self):super(SiameseNetwork, self).__init__()# Setting up the Sequential of CNN Layers# self.cnn1 = nn.Sequential(# nn.Conv2d(3, 256, kernel_size=11,stride=4),# nn.ReLU(inplace=True),# nn.MaxPool2d(3, stride=2),# nn.Conv2d(256, 256, kernel_size=5, stride=1),# nn.ReLU(inplace=True),# nn.MaxPool2d(2, stride=2),# nn.Conv2d(256, 384, kernel_size=3,stride=1),# nn.ReLU(inplace=True)# )self.cnn1=nn.Conv2d(3, 256, kernel_size=11,stride=4)self.relu = nn.ReLU()self.maxpool1=nn.MaxPool2d(3, stride=2)self.cnn2=nn.Conv2d(256, 256, kernel_size=5,stride=1)self.maxpool2=nn.MaxPool2d(2, stride=2)self.cnn3=nn.Conv2d(256, 384, kernel_size=3,stride=1)self.fc1 =nn.Linear(46464, 1024)self.fc2=nn.Linear(1024, 256)self.fc3=nn.Linear(256, 1)# Setting up the Fully Connected Layers# self.fc1 = nn.Sequential(# nn.Linear(384, 1024),# nn.ReLU(inplace=True),# nn.Linear(1024, 32*46464),# nn.ReLU(inplace=True),# nn.Linear(32*46464,1)# )def forward_once(self, x):# This function will be called for both images# Its output is used to determine the similiarity# output = self.cnn1(x)# print(output.view(output.size()[0], -1).shape)# output = output.view(output.size()[0], -1)# output = self.fc1(output)# print(x.shape)output= self.cnn1(x)# print(output.shape)output=self.relu(output)# print(output.shape)output=self.maxpool1(output)# print(output.shape)output= self.cnn2(output)# print(output.shape)output=self.relu(output)# print(output.shape)output=self.maxpool2(output)# print(output.shape)output= self.cnn3(output)output=self.relu(output)# print(output.shape)output=output.view(output.size()[0], -1)# print(output.shape)output=self.fc1(output)# print(output.shape)output=self.fc2(output)# print(output.shape)output=self.fc3(output)return outputdef forward(self, input1, input2):# In this function we pass in both images and obtain both vectors# which are returnedoutput1 = self.forward_once(input1)output2 = self.forward_once(input2)return output1, output2
我们的网络称为 SiameseNetwork,我们可以看到它几乎与标准 CNN 相同。唯一可以注意到的区别是我们有两个前向函数(forward_once 和 forward)。为什么呢?
我们提到通过相同网络传递两个图像。forward_once 函数在 forward 函数中调用,它将一个图像作为输入传递到网络。输出存储在 output1 中,而来自第二个图像的输出存储在 output2 中,正如我们在 forward 函数中看到的那样。通过这种方式,我们设法输入了两个图像并从我们的模型获得了两个输出。
我们已经看到了损失函数应该是什么样子,现在让我们来编码它。我们创建了一个名为 ContrastiveLoss 的类,与模型类一样,我们将有一个 forward 函数。
class ContrastiveLoss(torch.nn.Module):def __init__(self, margin=2.0):super(ContrastiveLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):# Calculate the euclidean distance and calculate the contrastive losseuclidean_distance = F.pairwise_distance(output1, output2, keepdim = True)loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))return loss_contrastivenet = SiameseNetwork().cuda()criterion = ContrastiveLoss()optimizer = optim.Adam(net.parameters(), lr = 0.0005 )
按照顶部的流程图,我们可以开始创建训练循环。我们迭代100次并提取两个图像以及标签。我们将梯度归零,将两个图像传递到网络中,网络输出两个向量。然后,将两个向量和标签馈送到我们定义的 criterion(损失函数)中。我们进行反向传播和优化。出于一些可视化目的,并查看我们的模型在训练集上的性能,因此我们将每10批次打印一次损失。
counter = []loss_history = [] iteration_number= 0# Iterate throught the epochsfor epoch in range(100):# Iterate over batchesfor i, (img0, img1, label) in enumerate(train_loader, 0):# Send the images and labels to CUDAimg0, img1, label = img0.cuda(), img1.cuda(), label.cuda()# Zero the gradientsoptimizer.zero_grad()# Pass in the two images into the network and obtain two outputsoutput1, output2 = net(img0, img1)# Pass the outputs of the networks and label into the loss functionloss_contrastive = criterion(output1, output2, label)# Calculate the backpropagationloss_contrastive.backward()# Optimizeoptimizer.step()# Every 10 batches print out the lossif i % 10 == 0 :print(f"Epoch number {epoch}\n Current loss {loss_contrastive.item()}\n")iteration_number += 10counter.append(iteration_number)loss_history.append(loss_contrastive.item())show_plot(counter, loss_history)
我们现在可以分析结果。我们能看到的第一件事是损失从1.6左右开始,并以接近1的数字结束。看到模型的实际运行情况将是有趣的。现在是我们在模型之前没见过的图像上测试我们的模型的部分。与之前一样,我们使用我们的自定义数据集类创建了一个 Siamese Network 数据集,但现在我们将其指向测试文件夹。
作为接下来的步骤,我们从第一批中提取第一张图像,并迭代5次以提取接下来5批中的5张图像,因为我们设置每批包含一张图像。然后,使用 torch.cat() 水平组合两个图像,我们可以清楚地可视化哪个图像与哪个图像进行了比较。
我们将两个图像传入模型并获得两个向量,然后将这两个向量传入 F.pairwise_distance() 函数,这将计算两个向量之间的欧氏距离。使用这个距离,我们可以作为衡量两张脸有多不相似的指标。
test_loader_one = DataLoader(test_dataset, batch_size=1, shuffle=False)dataiter = iter(test_loader_one)x0, _, _ = next(dataiter)for i in range(5):# Iterate over 5 images and test them with the first image (x0)_, x1, label2 = next(dataiter)# Concatenate the two images togetherconcatenated = torch.cat((x0, x1), 0)output1, output2 = net(x0.cuda(), x1.cuda())euclidean_distance = F.pairwise_distance(output1, output2)imshow(torchvision.utils.make_grid(concatenated), f'Dissimilarity: {euclidean_distance.item():.2f}')view raweval.py hosted with ❤ by GitHub
总结
Siamese 网络与对比损失结合,为学习图像相似性提供了一个强大而有效的框架。通过对相似和不相似图像进行训练,这些网络可以学会提取能够捕捉基本视觉特征的判别性embedding。对比损失函数通过优化embedding空间进一步增强
了模型准确测量图像相似性的能力。随着深度学习和计算机视觉的进步,Siamese 网络在各个领域都有着巨大的潜力,包括图像搜索、人脸验证和推荐系统。通过利用这些技术,我们可以为基于内容的图像检索、视觉理解以及视觉领域的智能决策开启令人兴奋的可能性。
以上是探索使用對比損失的孿生網路進行影像相似性比較的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G
