開源大模型AI代理作業系統:像Windos一樣,操控AI代理
この記事は AIGC Open Community の許可を得て転載していますので、転載については出典元にお問い合わせください。
AIGC の詳細については、51CTO AI.x コミュニティをご覧ください。
https://www.51cto.com/aigc/
昨年、AutoGPT の登場により、AI エージェントの強力な自動化機能が認識され、新しい AI エージェント トラックが作成されました。しかし、サブタスクのスケジューリング、リソースの割り当て、AI間の連携などには、解決すべき課題がまだ多く残されている。
そこで、ラトガース大学の研究者たちは、大規模なモデルを中核とする AI エージェント オペレーティング システムである AIOS を開発しました。 AI エージェントの数が増加するにつれてリソースの呼び出しレートが低下するという問題を効果的に解決でき、エージェント間のコンテキストの切り替えを促進し、同時エージェントを実装し、エージェントのアクセス制御を維持することもできます。
オープンソース アドレス: https://github.com/agiresearch/AIOS
ペーパー アドレス: https://arxiv.org/ abs /2403.16971
##AIOS のアーキテクチャは、私たちが使用する PC オペレーティング システムと似ており、主にアプリケーション層とカーネル層に分かれています。およびハードウェア層チャンク 。唯一の違いは、AIOS が、大規模モデルに関連するタスクを特に管理するカーネル マネージャーをカーネル層に構築することです。
アプリケーション層 、 は主にプロキシ アプリケーションで構成されます (例:カーネル層は従来の OS システムと大規模モデルを組み合わせて開発され、OS システムは主にファイル管理に使用され、大規模モデルはスケジュールと管理に使用されます。 AI エージェント;
ハードウェア層は、CPU、GPU、メモリ、周辺機器などのハードウェア デバイスで構成されますが、大規模モデルのカーネルはハードウェアと直接対話できません。カーネル層によって提供される呼び出しを通じてハードウェア リソースを間接的に管理し、システムの整合性と効率を確保します。
AI エージェント スケジューラー
AI エージェント スケジューラーは主に、大規模なモデルのエージェント リクエストを合理的にスケジュールし、最適化して完全に実行する責任を負います。大規模モデルの使用 モデルの計算リソース。複数のエージェントが大規模なモデルへのリクエストを同時に開始する場合、スケジューラは、単一のエージェントが大規模なモデルを長時間占有し、他のエージェントが長時間待機することを避けるために、特定のスケジューリング アルゴリズムに従ってリクエストを並べ替える必要があります。 。
さらに、AIOS の設計では、より最適化されたリソース割り当てを実現するためにプロキシ リクエスト間の依存関係を考慮するなど、より複雑なスケジューリング戦略もサポートされています。
スケジューリング指示がない場合、エージェントはタスクを 1 つずつ順番に実行する必要があり、後続のエージェントは長時間待機する必要があります;スケジューリング アルゴリズムを使用した後を使用すると、各エージェントのリクエストをインターリーブして並列実行できるため、全体的な待機時間と応答遅延が大幅に削減されます。
コンテキスト マネージャー
大規模モデル生成プロセスでは通常、ビーム検索などのヒューリスティック検索が使用されるため、検索ツリーは徐々に構築され、異なるものになります。パスが評価され、最終的に結果が得られます。
ただし、生成プロセス中に大規模なモデルがスケジューラによって中断された場合、中間状態がすべて失われ、以前の計算が無駄になることを避けるために、コンテキスト マネージャーは現在のビーム検索を更新します。ツリーの状態(各パスの確率などを含む)を取得してスナップショットを保存します。
さらに、ほとんどの大規模モデルにはコンテキストの長さ制限があり、実際のシナリオの入力コンテキストはこの制限を超えることがよくあります。この問題を解決するために、コンテキスト マネージャーは、長いコンテキストを圧縮またはブロックできるテキスト要約などの機能を統合し、大規模なモデルが長いコンテキスト情報を効率的に理解して処理できるようにします。
メモリ マネージャー
メモリ マネージャーは主に、短期記憶リソースを管理し、各 AI に効率的な対話ログと中間データを提供する責任があります。エージェントの一時保管場所です。
當AI代理處於等待執行或正在運行狀態時,其所需的資料將被保存在由記憶體管理器分配的記憶體區塊中。一旦代理任務結束,對應的記憶體區塊也會被系統回收,以確保記憶體資源的高效利用。 AIOS會為每個AI代理程式分配獨立的記憶體,並透過存取管理器來實現不同代理程式之間記憶體隔離。未來,AIOS會引入更複雜的記憶體共享機制和層級快取策略,以進一步優化AI代理的整體效能。 想了解更多AIGC的內容,請造訪:51CTO AI.x社群 https://www.51cto.com/ aigc/
以上是開源大模型AI代理作業系統:像Windos一樣,操控AI代理的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

人臉偵測辨識技術已經是一個比較成熟且應用廣泛的技術。而目前最廣泛的網路應用語言非JS莫屬,在Web前端實現人臉偵測辨識相比後端的人臉辨識有優勢也有弱勢。優點包括減少網路互動、即時識別,大大縮短了使用者等待時間,提高了使用者體驗;弱勢是:受到模型大小限制,其中準確率也有限。如何在web端使用js實現人臉偵測呢?為了實現Web端人臉識別,需要熟悉相關的程式語言和技術,如JavaScript、HTML、CSS、WebRTC等。同時也需要掌握相關的電腦視覺和人工智慧技術。值得注意的是,由於Web端的計

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP
