LiDAR模擬新想法 | LidarDM:協助4D世界生成,模擬殺器~
原標題:LidarDM: Generative LiDAR Simulation in a Generated World
論文連結:https://arxiv.org/pdf/2404.02903.pdf
程式碼連結:https ://github.com/vzyrianov/lidardm
作者單位:伊利諾大學麻省理工學院
##論文想法:
本文介紹了LidarDM,這是一種新穎的雷射雷達生成模型,能夠產生逼真、佈局感知、物理可信以及時間上連貫的雷射雷達視訊。 LidarDM在雷射雷達生成建模方面具有兩個前所未有的能力:(一)由駕駛場景引導的雷射雷達生成,為自動駕駛模擬提供了重大激勵;(二)4D光達點雲生成,使得創建逼真且時間上連貫的雷射雷達序列成為可能。本文模型的核心是一個新穎的綜合4D世界生成架構。具體來說,本文採用隱性擴散模型(latent diffusion models)來產生3D場景,將其與動態參與者(dynamic actors)結合,形成底層的4D世界,然後在這個虛擬環境中產生逼真的雷射感知數據。本文的實驗表明,本文的方法在逼真度、時間連貫性和佈局一致性方面優於競爭演算法。本文也展示了LidarDM可作為生成世界模擬器,用於訓練和測試感知模型。網頁設計:
制定的生成模型在處理資料分佈和內容創作方面已經越來越引起人們的關注,例如在圖像和視訊生成[ 10, 33, 52-55]、3D物體生成[10,19,38,52]、壓縮[5,29,68]以及編輯[37,47]等領域。生成模型對於模擬[6, 11, 18, 34, 46, 60, 64, 66, 76, 82]也表現出出色的潛力,能夠創建逼真的場景及其相關的感知數據,用於訓練和評估安全關鍵的智慧能力,如機器人和自動駕駛車輛,無需昂貴的手工建模現實世界。這些能力對於依賴廣泛的環境訓練或場景測試的應用至關重要。 在條件影像和影片產生方面的進展非常顯著,但自動駕駛應用產生功能特定場景下逼真的光達點雲序列的具體任務仍未得到充分探索。目前的光達產生方法主要分為兩大類,每一類都面臨特定的挑戰。- 目前的雷射雷達生成建模方法[8, 72, 79, 83]僅限於單幀生成,並且沒有提供語義可控性和時間一致性的手段。
- 雷射雷達重模擬(resimulation)[14, 17, 46, 65, 67, 74]嚴重依賴使用者創建或現實世界收集的資產。這增加了高昂的操作成本,限制了多樣性,並限制了更廣泛的應用性。
圖 1:本文展示了 LidarDM,這是一個新穎的 4D 雷射雷達生成模型。本文產生的光達影片同時具有逼真性、佈局條件性、物理可信性、多樣性和時間連貫性的優勢。
圖2:LidarDM 的應用:(a) 在沒有3D 捕捉或建模的情況下產生與地圖緊密對齊的雷射雷達(彩色框突出顯示雷射雷達與地圖之間的一致性);(b) 為現有的交通模擬器(Waymax [20])提供感測器數據,使其能夠僅從純感測器數據評估安全關鍵場景;(c) 產生具有可控障礙物位置的大量光達資料(被視為免費獲得的真實標籤),以透過無需昂貴資料捕捉和標註的預訓練來改進感知模型。
圖 3:LidarDM 概覽:給定時間 t = 0 時的交通佈局輸入,LidarDM 首先產生交通參與者(actors)和靜態場景。然後,本文產生交通參與者(actors)和自車的運動,並建構底層的 4D 世界。最後,使用基於生成和物理的模擬來創建逼真的 4D 感測器數據。
圖 4:本文的 3D 場景產生流程。首先,累積的點雲被用來重建每個真實網格樣本。接下來,訓練一個變分自編碼器(VAE)將網格壓縮成隱式編碼。最後,訓練以地圖為條件的擴散模型,在 VAE 的隱空間內進行取樣,產生新的樣本。
圖 5:用於感知噪音模擬的隨機光線丟棄(raydrop)網絡,進一步增強了真實感。本文在上方的掩碼距離圖和掩碼光達影像中以紅色突出顯示了光線丟棄的(raydropped)點。
實驗結果:
圖 6:真實的 KITTI-360 樣本與來自競爭方法的無條件樣本比較。 UltraLiDAR 樣本視覺化直接從它們的論文中取得。與先前的方法相比,LidarDM 產生的樣本具有更多數量、更詳細的顯著物體(例如,汽車、行人)、更清晰的 3D 結構(例如,直牆)以及更逼真的道路佈局。
圖 7:在 2 Waymax [20] 地圖序列上進行的以地圖為條件的序列產生的定性結果。本文也展示了對應的累積點雲,以突顯 LidarDM 的時序一致性。
總結:
本文提出了LidarDM,這是一個新穎的基於佈局條件的隱擴散模型(latent diffusion models) ,用於產生逼真的雷射雷達點雲。本文的方法將問題框定為一個聯合的 4D 世界創建和感知資料生成任務,並開發了一個新穎的隱擴散模型(latent diffusion models) 來創建 3D 場景。由此產生的點雲視訊是真實的、連貫的,並且具有佈局感知(layout-aware)能力。
以上是LiDAR模擬新想法 | LidarDM:協助4D世界生成,模擬殺器~的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

要通過 Git 下載項目到本地,請按以下步驟操作:安裝 Git。導航到項目目錄。使用以下命令克隆遠程存儲庫:git clone https://github.com/username/repository-name.git

更新 git 代碼的步驟:檢出代碼:git clone https://github.com/username/repo.git獲取最新更改:git fetch合併更改:git merge origin/master推送更改(可選):git push origin master

要刪除 Git 倉庫,請執行以下步驟:確認要刪除的倉庫。本地刪除倉庫:使用 rm -rf 命令刪除其文件夾。遠程刪除倉庫:導航到倉庫設置,找到“刪除倉庫”選項,確認操作。

解決 Git 下載速度慢時可採取以下步驟:檢查網絡連接,嘗試切換連接方式。優化 Git 配置:增加 POST 緩衝區大小(git config --global http.postBuffer 524288000)、降低低速限制(git config --global http.lowSpeedLimit 1000)。使用 Git 代理(如 git-proxy 或 git-lfs-proxy)。嘗試使用不同的 Git 客戶端(如 Sourcetree 或 Github Desktop)。檢查防火

在開發一個電商網站時,我遇到了一個棘手的問題:如何在大量商品數據中實現高效的搜索功能?傳統的數據庫搜索效率低下,用戶體驗不佳。經過一番研究,我發現了Typesense這個搜索引擎,並通過其官方PHP客戶端typesense/typesense-php解決了這個問題,大大提升了搜索性能。

Git 代碼合併過程:拉取最新更改以避免衝突。切換到要合併的分支。發起合併,指定要合併的分支。解決合併衝突(如有)。暫存和提交合併,提供提交消息。

Git Commit 是一種命令,將文件變更記錄到 Git 存儲庫中,以保存項目當前狀態的快照。使用方法如下:添加變更到暫存區域編寫簡潔且信息豐富的提交消息保存並退出提交消息以完成提交可選:為提交添加簽名使用 git log 查看提交內容

如何更新本地 Git 代碼?用 git fetch 從遠程倉庫拉取最新更改。用 git merge origin/<遠程分支名稱> 將遠程變更合併到本地分支。解決因合併產生的衝突。用 git commit -m "Merge branch <遠程分支名稱>" 提交合併更改,應用更新。
