原標題:Towards Realistic Scene Generation with LiDAR Diffusion Models
論文連結:https://hancyran.github.io/assets/paper/lidar_diffusion.pdf
程式碼連結:https://lidar-diffusion.github.io
作者單位:CMU 豐田研究院南加州大學
为了实现条件化的逼真激光雷达场景生成,本文提出了一种基于曲线的生成器,称为激光雷达扩散模型(LiDMs),以回答上述问题并解决近期工作中的不足。LiDMs 能够处理任意条件,例如边界框、相机图像和语义地图。LiDMs 利用距离图像作为激光雷达场景的表征,这在各种下游任务中非常普遍,如检测[34, 43]、语义分割[44, 66]以及生成[75]。这一选择是基于距离图像与点云之间可逆且无损的转换,以及从高度优化的二维卷积操作中获得的显著优势。为了在扩散过程中把握激光雷达场景的语义和概念本质,本文的方法在扩散过程之前,将激光雷达场景的编码点转换到一个感知等效的隐空间(perceptually equivalent latent space)中。
为了进一步提高真实世界激光雷达数据的逼真模拟效果,本文专注于三个关键组成部分:模式真实性、几何真实性和物体真实性。首先,本文利用曲线压缩在自动编码过程中保持点的曲线图案,这一做法受到[59]的启发。其次,为了实现几何真实性,本文引入了点级坐标监督,以教会本文的自编码器理解场景级别的几何结构。最后,本文通过增加额外的块级下采样策略来扩大感受野,以捕捉视觉上较大物体的完整上下文。通过这些提出的模块增强,所产生的感知空间使得扩散模型能够高效地合成高质量的激光雷达场景(参见图1),同时在性能上也表现出色,与基于点的扩散模型相比速度提升了107倍(在一台NVIDIA RTX 3090上评估),并支持任意类型的基于图像和基于 token 的条件。
图1. 本文的方法(LiDM)在无条件的激光雷达逼真场景生成方面确立了新的SOTA,并标志着从不同输入模态生成条件化激光雷达场景方向上的一个里程碑。
图2. 64线数据上 LiDMs 的概览,包括三个部分:激光雷达压缩(参见第3.3节和3.5节)、多模态条件化(参见第3.4节)以及激光雷达扩散(参见第3.5节)。
图3. 在64线场景下,来自 LiDARGen [75]、Latent Diffusion [51] 以及本文的 LiDMs 的例子。
图4. 在32线场景下,来自本文 LiDMs 的例子。
图5. 在SemanticKITTI [5]数据集上,用于语义地图到激光雷达生成的本文的 LiDM 的例子。
图6. 在KITTI-360 [37]数据集上,用于条件相机到激光雷达生成的 LiDM 的例子。橙色框表示输入图像所覆盖的区域。对于每个场景,KITTI-360提供一个视角,它只覆盖了场景的一部分。因此,LiDM 对相机覆盖的区域执行条件生成,对其余未观测到的区域执行无条件生成。
图7. 在64线场景下,用于 zero-shot 文本到激光雷达生成的 LiDM 的例子。橙色虚线框起的区域表示受条件影响的区域,绿色框突出显示了可能与提示词相关联的物体。
图8. 总体缩放因子()与采样质量(FRID和FSVD)的对比。本文在KITTI-360 [37]数据集上比较了不同规模的曲线级编码(Curve)、块级编码(Patch)以及带有一(C 1P)或两(C 2P)阶段块级编码的曲线级编码。
圖9. LiDM 的例子,包括有或沒有點級監督,如第3.3節所提出的。
@inproceedings{ran2024towards,title={Towards Realistic Scene Generation with LiDAR Diffusion Models},
author={ Ran, Haoxi and Guizilini, Vitor and Wang, Yue},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
以上是CVPR 2024 | 面向真實感場景產生的光達擴散模型的詳細內容。更多資訊請關注PHP中文網其他相關文章!