首頁 > 科技週邊 > 人工智慧 > 單卡跑Llama 70B快過雙卡,微軟硬生把FP6搞到A100哩 | 開源

單卡跑Llama 70B快過雙卡,微軟硬生把FP6搞到A100哩 | 開源

PHPz
發布: 2024-04-29 16:55:12
轉載
1299 人瀏覽過

FP8和更低的浮點數量化精度,不再是H100的「專利」了!

老黃想讓大家用INT8/INT4,微軟DeepSpeed團隊在沒有英偉達官方支援的條件下,硬生生在A100上跑起FP6#。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

測試結果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶爾超過INT4,而且擁有比後者更高的精度

在此基礎之上,還有端到端的大模型支援#,目前已經開源並整合到了DeepSpeed等深度學習推理框架中。

這成果對大模型的加速效果也是立竿見影-在這種框架下用單卡跑Llama,吞吐量比雙倍還要高2.65倍。

一名機器學習研究人員看了後表示,微軟的這項研究簡直可以用crazy來形容。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

表情包也第一時間上線,be like:

英偉達:只有H100支援FP8。

微軟:Fine,我自己搞定。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

那麼,這個框架到底能實現什麼樣的效果,背後又採用了什麼樣的技術呢?

用FP6跑Llama,單卡比雙卡還快

在A100上使用FP6精度,帶來的是核心級的效能提升#。

研究人員選取了不同大小的Llama模型和OPT模型之中的線性層,在NVIDIA A100-40GB GPU平台上,使用CUDA 11.8進行了測試。

結果比英威達官方的cuBLAS(W16A16)與TensorRT-LLM(W8A16),TC-FPx(W6A16)度提升的最大值分別是2.6倍和1.9倍。

比起於4bit的BitsandBytes(W4A16)方法,TC-FPx的最大速度提升則是達到了8.9倍。

(W和A分別代表權重量化位寬和激活量化位寬)

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

#△歸一化數據,以cuBLAS結果為1

同時,TC-FPx核心也減少了對DRAM記憶體的訪問,並提高了DRAM頻寬利用率和Tensor Cores利用率,以及ALU和FMA單元的利用率。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

在TC-FPx基礎之上設計的端對端推理框架FP6-LLM,也給大模型帶來了顯著的性能提高。

以Llama-70B為例,用FP6-LLM在單卡上的運行吞吐量,比FP16在雙卡上還要高出2.65倍,在16以下的批大小中的延遲也低於FP16。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

而對於參數量小一些的模型OPT-30B(FP16也使用單卡),FP6-LLM同樣帶來了明顯的吞吐量提升和延遲降低。

而且單卡FP16在這種條件下最多支援的批次大小只有4,FP6-LLM卻可以在批次大小為16的情況下正常運作。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

那麼,微軟團隊是怎麼實現在A100上運行FP16量化的呢?

重新設計核心方案

為了實現對包括6bit在內精度的支持,TC-FPx團隊設計了一個統一的核心方案,可以支援不同位寬的量化權重。

相比於傳統的雙核心方法,TC-FPx透過將去量化和矩陣乘法融合在單一核心中,減少了記憶體存取次數,提高了效能。

實現低精度量化的核心奧義則是通過去量化方式,將FP6精度的數據「偽裝」成FP16,然後按照FP16的格式交給GPU進行運算。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

同時團隊也利用了位元級預打包技術,解決GPU記憶體系統對非2的冪次位寬(如6 -bit)不友善的問題。

具體來說,位元級預打包是在模型推理之前對權重資料進行重新組織,包括將6-bit量化的權重重新排列,以便它們能夠以GPU記憶體系統友好的方式進行存取。

此外,由於GPU記憶體系統通常以32位元或64位元的區塊進行資料訪問,位元級預打包技術將還會以6-bit權重打包,使得它們能夠以這些對齊的區塊的形式存儲和訪問。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

預先打包完成後,研究團隊使用SIMT核心的平行處理能力,對暫存器中的FP6權重執行並行去量化,產生FP16格式的權重。

去量化後的FP16權重在暫存器中被重構,然後送入Tensor Core,並使用重構後的FP16權重執行矩陣乘法運算,完成線性層的計算。

在這個過程中,團隊利用了SMIT核心的位元級並行性,提高了整個去量化過程的效率。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

而為了權重構任務能夠並行運行,團隊也使用了一種並行權重拼接技術。

具體來說,每個權重被分割成幾個部分,每個部分的位寬是2的冪次(如把6分割成2 4或4 2)

在去量化之前,權重首先從共享記憶體載入到暫存器中。由於每個權重被分割成多個部分,需要在運行時在暫存器層級重構完整的權重。

為了減少運行時的開銷,TC-FPx提出了一種平行提取和拼接權重的方法。這種方法使用兩組暫存器來儲存32個FP6權重的片段,並行地重建這些權重。

同時,為了並行提取和拼接權重,需要確保初始資料佈局滿足特定的順序要求,因此TC-FPx透過在運行前對權重片段進行重排。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

此外,TC-FPx也設計了一個軟體管線,將去量化步驟與Tensor Core的矩陣乘法運算融合在一起,透過指令層級並行性提高了整體的執行效率。

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源

論文網址:https://arxiv.org/abs/2401.14112

以上是單卡跑Llama 70B快過雙卡,微軟硬生把FP6搞到A100哩 | 開源的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:51cto.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
最新問題
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板