史上最大重建25km²! NeRF-XL:真正有效利用多卡聯合訓練!
原文標題:NeRF-XL: Scaling NeRFs with Multiple GPUs
論文連結:https://research.nvidia.com/labs/toronto-ai/nerfxl/assets/nerfxl.pdf
計畫連結:https://research.nvidia.com/labs/toronto-ai/nerfxl/
作者單位:NVIDIA 加州大學柏克萊分校
##論文想法:
圖 2:獨立訓練與多GPU聯合訓練。獨立地訓練多個NeRFs[9,15,18]要求每個NeRF既要建模焦點區域也要建模其周圍環境,這導致了模型容量的冗餘。相較之下,本文的聯合訓練方法使用不重疊的NeRFs,因此沒有任何冗餘。
圖 3:獨立訓練需要在新視角合成時進行混合。無論是在2D[9, 15]或3D[18]中進行混合,都會在渲染中引入模糊。
圖 4:獨立訓練導致不同的相機最佳化。在NeRF中,相機優化可以透過變換不準確的相機本身或所有其他相機以及底層3D場景來實現。因此,伴隨相機優化獨立訓練多個NeRF可能導致相機校正和場景幾何的不一致性,這給混合渲染帶來了更多困難。
圖 5:3D混合可能造成的視覺偽影。左圖展示了使用2個GPU訓練的MegaNeRF結果。在0%重疊時,由於獨立訓練,邊界出現了偽影;而在15%重疊時,由於3D混合,出現了嚴重的偽影。右圖闡釋了這種偽影的成因:雖然每個獨立訓練的NeRF渲染出正確的顏色,但混合後的NeRF並不保證正確的顏色渲染。
圖 6:本文的訓練流程。本文的方法共同訓練所有GPU上的多個NeRFs,每個NeRF涵蓋一個不相交的空間區域。 GPU之間的通訊僅發生在前向傳播中,而不發生在後向傳播中(如灰色箭頭所示)。 (a) 本文可以透過評估每個NeRF以獲得樣本顏色和密度,然後將這些值廣播到所有其他GPU以進行全域體渲染(見第4.2節)。 (b) 透過重寫體渲染方程,本文可以將資料傳輸量大幅減少到每條光線一個值,從而提高效率(見第4.3節)。
實驗結果:
圖 7:定性比較。與先前的工作相比,本文的方法有效地利用多GPU配置,在所有類型的資料上提高了效能。
圖 8:定量比較。基於獨立訓練的先前工作未能隨著額外GPU的增加而實現效能提升,而本文的方法隨著訓練資源的增加,享受了渲染品質和速度的提升。
圖 9:本文方法的可擴展性。更多的GPU允許有更多的可學習參數,這導致了更大的模型容量和更好的品質。
圖 10:大規模擷取上的更多渲染結果。本文在更大的捕獲資料集上使用更多的GPU測試了本文方法的穩健性。請參閱本文的網頁,以取得這些資料的影片導覽。
圖 11:在University4資料集上與PyTorch DDP的比較。 PyTorch 分散式資料並行(Distributed Data Parallel,DDP)旨在透過跨GPU分佈光線來加快渲染速度。相較之下,本文的方法是跨GPU分佈參數,突破了叢集中單一GPU的記憶體限制,並且能夠擴大模型容量以獲得更好的品質。
圖 12:University4上的同步成本。本文基於分區的體渲染(見第4.3節)允許 tile-based 通信,這比原始的基於樣本的通信(見第4.2節)成本要低得多,因此能夠實現更快的渲染。
總結:
總結來說,本文重新檢視了將大規模場景分解為獨立訓練的NeRFs(神經輻射場)的現有方法,並發現了阻礙額外運算資源(GPUs)有效利用的重大問題,這與利用多GPU設定來提升大規模NeRF效能的核心目標相矛盾。因此,本文引入了NeRF-XL,這是一種原理性的演算法,能夠有效地利用多GPU設置,並透過聯合訓練多個非重疊的NeRFs來在任何規模上增強NeRF性能。重要的是,本文的方法不依賴任何啟發式規則,並且在多GPU設定中遵循NeRF的擴展規律(scaling laws),適用於各種類型的資料。
引用:
@misc{li2024nerfxl,title={NeRF-XL: Scaling NeRFs with Multiple GPUs}, author={Ruilong Li and Sanja Fidler and Angjoo Kanazawa and Francis Williams},year={2024},eprint={2404.16221},archivePrefix={arXiv},primaryClass={cs.CV}}
以上是史上最大重建25km²! NeRF-XL:真正有效利用多卡聯合訓練!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高
