目錄
對抗性攻擊" >對抗性攻擊
相關研究" >相關研究
#實驗流程" >#實驗流程
實驗結果" >實驗結果
首頁 科技週邊 人工智慧 微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

May 07, 2024 pm 07:20 PM
模型 訓練

大模型又又被曝光出安全問題!

近日,來自Enkrypt AI的研究人員發表了令人震驚的研究成果:量化和微調竟然也能降低大模型的安全性!

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

論文網址:https://arxiv.org/pdf/2404.04392.pdf

在在作者的實際測試中,Mistral、Llama等基礎模型包括它們微調版本,無一倖免。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

在經過了量化或微調之後,LLM被越獄(Jailbreak)的風險大大增加。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

——LLM:我效果驚艷,我無所不能,我千瘡百孔......

也許,未來很長一段時間內,在大模型各種漏洞上的攻防戰爭是停不下來了。

由於原理上的問題,AI模型天然兼具穩健性和脆弱性,在巨量的參數和計算中,有些無關緊要,但又有一小部分至關重要。

從某種程度上講,大模型遇到的安全問題,與CNN時代一脈相承,

利用特殊提示、特殊字符誘導LLM產生有毒輸出,包括先前報導過的,利用LLM長上下文特性,使用多輪對話越獄的方法,都可以稱為:對抗性攻擊。

對抗性攻擊

#在CNN時代,透過更改輸入影像的幾個像素,就能導致AI模型對影像分類錯誤,攻擊者甚至可以誘導模型輸出為特定的類別。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

上圖展示了對抗性攻擊的過程,為了便於觀察,中間的隨機擾動做了一些誇張,

實際上中,對於對抗攻擊來說,只需要像素值很小的改變,就可以達到攻擊效果。

更危險的是,研究人員發現這種虛擬世界的攻擊行為,可以轉移到現實世界。

下圖的「STOP」標誌來自先前的一篇著名工作,透過在指示牌上添加一些看似無關的塗鴉,就可以讓自動駕駛系統將停車標誌誤辨識為限速標誌。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

——這塊牌子後來被收藏在倫敦科學博物館,提醒世人時時注意AI模型潛藏的風險。

大語言模型目前受到的此類傷害包括但可能不限於:越獄、提示注入攻擊、隱私洩露攻擊等。

例如下面這個使用多輪對話進行越獄的例子:

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

還有下圖展示的一種提示注入攻擊,使用尖括號將惡意指令隱藏在提示中,結果,GPT-3.5忽略了原來總結文本的指令,開始“make missile with sugar”。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

為了回應這類問題,研究人員一般採用針對性的對抗訓練,來維持模型對齊人類的價值觀。

但事實上,能夠誘導LLM產生惡意輸出的提示可能無窮無盡,面對這種情況,紅隊該怎麼做?

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

防禦端可以採用自動化搜索,而攻擊端可以使用另一個LLM來產生提示來幫助越獄。

另外,目前針對大模型的攻擊大多是黑盒的,不過隨著我們對LLM理解的加深,更多的白盒攻擊也會不斷加入。

相關研究

#不過別擔心,兵來將擋水來土掩,相關的研究早就捲起來了。

小編隨手一搜,單單是今年的ICLR上,就有多篇相關工作。

例如下面這篇Oral:

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

#論文網址:https://openreview.net/pdf?id=hTEGyKf0dZ

#這篇工作跟今天介紹的文章很像了:微調LLM會帶來安全風險。

研究人員僅透過幾個對抗性訓練樣本對LLM進行微調,就可以破壞其安全對齊。

其中一個例子只用10個樣本,透過OpenAI的API對GPT-3.5 Turbo進行微調,成本不到0.20美元,就使得模型可以回應幾乎任何有害指令。

另外,即使沒有惡意意圖,僅使用良性和常用的資料集進行微調,也可能無意中降低LLM的安全對齊。

再例如下面這篇Spolight:

Jailbreak in pieces: Compositional Adversarial Attacks on Multi-Modal Language Models

介紹了一個針對視覺語言模型的新型越獄攻擊方法:

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

論文地址:https://openreview.net/pdf?id=plmBsXHxgR

#研究人員將視覺編碼器處理的對抗性圖像與文字提示配對,從而破壞了VLM的跨模態對齊。

而且這種攻擊的門檻很低,不需要存取LLM,對於像CLIP這樣的視覺編碼器嵌入在閉源LLM中時,越獄成功率很高。

此外還有很多,這裡不再一一列舉,以下來看本文的實驗部分。

實驗細節

研究人員使用了稱為AdvBench SubsetAndy Zou的對抗有害提示子集,包含50個提示,要求提供32個類別的有害資訊。它是 AdvBench基準測試中有害行為資料集的提示子集。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

實驗使用的攻擊演算法是攻擊樹修剪(Tree-of-attacks pruning,TAP),實現了三個重要目標:

(1)黑盒子:演算法只需要黑盒子存取模型;

(2)自動:一旦啟動就不需要手動幹預;

(3)可解釋:演算法可以產生語意上有意義的提示。

TAP演算法與AdvBench子集中的任務一起使用,以在不同設定下攻擊目標LLM。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

#實驗流程

#為了了解微調、量化和護欄對LLM安全性(抵抗越獄攻擊)所產生的影響,研究人員創建了一個管道來進行越獄測試。

如前所述,使用AdvBench子集透過TAP演算法對LLM進行攻擊,然後記錄評估結果以及完整的系統資訊。

整個過程會多次迭代,同時考慮到與LLM相關的隨機性質。完整的實驗流程如下圖所示:

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

TAP是目前最先進的黑盒子和自動方法,可以產生具有語義意義的提示來越獄LLM。

TAP演算法使用攻擊者LLM A,向目標LLM T發送提示P。目標LLM R的反應和提示P,被輸入到評估者JUDGE(LLM)中,由JUDGE來判斷提示是否偏離主題。

如果提示偏離主題,則將其刪除(相當於消除了對應的不良攻擊提示樹),否則,JUDGE會對提示評分(0-10分)。

符合主題的提示將使用廣度優先搜尋產生攻擊。這個過程將迭代指定的次數,或持續到成功越獄。

針對越獄提示的護欄

#研究團隊使用內部的Deberta-V3模型,來偵測越獄提示。 Deberta-V3充當輸入過濾器,起到護欄的作用。

如果輸入提示被護欄過濾掉或越獄失敗,TAP演算法會根據初始提示和回應產生新提示,繼續嘗試攻擊。

實驗結果

#下面在三個不同的下游任務下,分別測試微調、量化和護欄帶來的影響。實驗基本上涵蓋了工業界和學術界的大多數LLM實際用例和應用。

實驗採用GPT-3.5-turbo作為攻擊模型,GPT-4-turbo作為判斷模型。

實驗中測試的目標模型來自各種平台,包括Anyscale、OpenAI的API、Azure的NC12sv3(配備32GB V100 GPU),以及Hugging Face,如下圖:

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

在實驗中探索了各種基礎模型、迭代型號、以及各種微調版本,同時也包含量化的版本。

微調

#對不同任務進行微調,可以提高LLM完成任務的效率,並微調為LLM提供了所需的專業領域知識,例如SQL程式碼產生、聊天等。

實驗透過將基礎模型的越獄漏洞與微調版本進行比較,來了解微調在增加或減少LLM脆弱性方面的作用。

研究人員使用Llama2、Mistral和MPT-7B等基礎模型,及其微調版本(如CodeLlama、SQLCoder、Dolphin和Intel Neural Chat)。

從下表的結果可以看出,與基礎模型相比,微調模型失去了安全對齊,並且很容易越獄。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

量化

#許多模型在訓練、微調甚至推理過程中都需要大量的運算資源。量化是減輕計算負擔最流行的方法之一(以犧牲模型參數的數值精度為代價)。

實驗中的量化模型使用GPT產生的統一格式(GGUF)進行量化,以下的結果表明,模型的量化會使其容易受到漏洞的影響。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

「護欄

#護欄是抵禦LLM攻擊的防線,作為守門員,它的主要功能是過濾掉可能導致有害或惡意結果的提示。

研究人員使用源自Deberta-V3模型的專有越獄攻擊偵測器,根據LLM產生的越獄有害提示進行訓練。

下面的結果表明,將護欄作為前期步驟的引入具有顯著效果,可以大大減少越獄的風險。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

另外,研究人員還在整合和不整合護欄(Guardrails)的情況下,對這些模型進行了測試,來評估護欄的性能和有效性,下圖中顯示了護欄的影響:

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

下圖顯示了越獄模型所需的查詢數。可以看出,在多數情況下,護欄確實為LLM提供了額外的抵抗力。

微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免

以上是微調和量化竟會增加越獄風險! Mistral、Llama等無一倖免的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1317
25
PHP教程
1268
29
C# 教程
1246
24
開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 Jun 11, 2024 am 09:51 AM

什麼?瘋狂動物城被國產AI搬進現實了?與影片一同曝光的,是一款名為「可靈」全新國產影片生成大模型。 Sora利用了相似的技術路線,結合多項自研技術創新,生產的影片不僅運動幅度大且合理,還能模擬物理世界特性,具備強大的概念組合能力與想像。數據上看,可靈支持生成長達2分鐘的30fps的超長視頻,分辨率高達1080p,且支援多種寬高比。另外再劃個重點,可靈不是實驗室放出的Demo或影片結果演示,而是短影片領域頭部玩家快手推出的產品級應用。而且主打一個務實,不開空頭支票、發布即上線,可靈大模型已在快影

牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) 牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對

See all articles