用Python中的字典来处理索引统计的方法
最近折腾索引引擎以及数据统计方面的工作比较多, 与 Python 字典频繁打交道, 至此整理一份此方面 API 的用法与坑法备案.
索引引擎的基本工作原理便是倒排索引, 即将一个文档所包含的文字反过来映射至文档; 这方面算法并没有太多花样可言, 为了增加效率, 索引数据尽可往内存里面搬, 此法可效王献之习书法之势, 只要把十八台机器内存全部塞满, 那么基本也就功成名就了. 而基本思路举个简单例子, 现在有以下文档 (分词已经完成) 以及其包含的关键词
doc_a: [word_w, word_x, word_y] doc_b: [word_x, word_z] doc_c: [word_y]
将其变换为
word_w -> [doc_a] word_x -> [doc_a, doc_b] word_y -> [doc_a, doc_c] word_z -> [doc_b]
写成 Python 代码, 便是
doc_a = {'id': 'a', 'words': ['word_w', 'word_x', 'word_y']} doc_b = {'id': 'b', 'words': ['word_x', 'word_z']} doc_c = {'id': 'c', 'words': ['word_y']} docs = [doc_a, doc_b, doc_c] indices = dict() for doc in docs: for word in doc['words']: if word not in indices: indices[word] = [] indices[word].append(doc['id']) print indices
不过这里有个小技巧, 就是对于判断当前词是否已经在索引字典里的分支
if word not in indices: indices[word] = []
可以被 dict 的 setdefault(key, default=None) 接口替换. 此接口的作用是, 如果 key 在字典里, 那么好说, 拿出对应的值来; 否则, 新建此 key , 且设置默认对应值为 default . 但从设计上来说, 我不明白为何 default 有个默认值 None , 看起来并无多大意义, 如果确要使用此接口, 大体都会自带默认值吧, 如下
for doc in docs: for word in doc['words']: indices. setdefault(word, []) .append(doc['id'])
这样就省掉分支了, 代码看起来少很多.
不过在某些情况下, setdefault 用起来并不顺手: 当 default 值构造很复杂时, 或产生 default 值有副作用时, 以及一个之后会说到的情况; 前两种情况一言以蔽之, 就是 setdefault 不适用于 default 需要惰性求值的场景. 换言之, 为了兼顾这种需求, setdefault 可能会设计成
def setdefault(self, key, default_factory): if key not in self: self[key] = default_factory() return self[key]
倘若真如此, 那么上面的代码应改成
for doc in docs: for word in doc['words']: indices.setdefault(word, list ).append(doc['id'])
不过实际上有其它替代方案, 这个最后会提到.
如果说上面只是一个能预见但实际上可能根本不会遇到的 API 缺陷, 那么下面这个就略打脸了.
考虑现在要进行词频统计, 即一个词在文章中出现了多少次, 如果直接拿 dict 来写, 大致是
def word_count(words): count = dict() for word in words: count.setdefault(word, 0) += 1 return count print word_count(['hiiragi', 'kagami', 'hiiragi', 'tukasa', 'yosimizu', 'kagami'])
当你兴致勃勃地跑起上面代码时, 代码会以迅雷不及掩脸之势把异常甩到你鼻尖上 --- 因为出现在 += 操作符左边的 count.setdefault(word, 0) 在 Python 中不是一个左值. 怎样, 现在开始念叨 C艹 类型体系的好了吧.
因为 Python 把默认的字面常量 {} 等价于 dict() 就认为 dict 是银弹的思想是要不得的; Python 里面各种数据结构不少, 解决统计问题, 理想的方案是 collections.defaultdict 这个类. 下面的代码想必看一眼就明白
from collections import defaultdict doc_a = {'id': 'a', 'words': ['word_w', 'word_x', 'word_y']} doc_b = {'id': 'b', 'words': ['word_x', 'word_z']} doc_c = {'id': 'c', 'words': ['word_y']} docs = [doc_a, doc_b, doc_c] indices = defaultdict(list) for doc in docs: for word in doc['words']: indices[word].append(doc['id']) print indices def word_count(words): count = defaultdict(int) for word in words: count[word] += 1 return count print word_count(['hiiragi', 'kagami', 'hiiragi', 'tukasa', 'yosimizu', 'kagami'])
完满解决了之前遇到的那些破事.
此外 collections 里还有个 Counter , 可以粗略认为它是 defaultdict(int) 的扩展.

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
