python多进程操作实例
由于CPython实现中的GIL的限制,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况我们需要使用多进程。 这也许就是python中多进程类库如此简洁好用的原因所在。在python中可以向多线程一样简单地使用多进程。
一、多进程
process的成员变量和方法:
>>class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]]) 来的定义类似于threading.Thread。target表示此进程运行的函数,args和kwargs表示target的参数。
>>name, pid
分别表示进程的名字,进程id。
>> daemon成员
daemon标志位bool变量,需要在start()调用前设置。daemon的初始值是从父进程继承而来。当一个进程结束的时候,它尝试去结束它的所有的daemon子进程。
注意:
daemon进程不允许创建子进程。否则当daemon进程结束的时候它的子进程不能被结束。
这里的daemon不是Unix的daemon进程,当父进程结束的时候所有的daemon子进程也将被终止(对于非daemon进程,父进程不等待非daemon的紫子进程,除非显示地对非daemon子进程使用join()方法)。
>> exitcode
如果进程还没有退出,则为None,如果正确的退出则为0,如果有错误则为>0的错误代码,如果进程为终止则为-1*singal。
>> start(), is_live(), terminate()
start()用来启动进程,is_live()用来查看进程的状态,terminate()用来终止进程。
>> run()
可以在process的子类中重载run()方法,从而设定进程的任务。重载process是构造新进程的另一种方式,一定程度上上等价于process的target参数。
multiprcessing的静态方法:
>> multiprocessing.cpu_count()
用来获得当前的CPU的核数,可以用来设置接下来子进程的个数。
>> multiprocessing.active_children()
用来获得当前所有的子进程,包括daemon和非daemon子进程。
实例:
代码如下:
import multiprocessing
import time
import sys
def worker(num):
p = multiprocessing.current_process()
print ('Starting:' + p.name + ":" + str(p.pid))
print(str(num))
sys.stdout.flush()
print ('Exiting :' + p.name + ":" + str(p.pid))
sys.stdout.flush()
def daemon():
p = multiprocessing.current_process()
print ('Starting:' + p.name + ":" + str(p.pid))
sys.stdout.flush()
time.sleep(10)
print ('Exiting :' + p.name + ":" + str(p.pid))
sys.stdout.flush()
def non_daemon():
p = multiprocessing.current_process()
print ('Starting:' + p.name + ":" + str(p.pid))
sys.stdout.flush()
time.sleep(20)
print ('Exiting :' + p.name + ":" + str(p.pid))
sys.stdout.flush()
if __name__ == '__main__':
w = multiprocessing.Process(name='worker', target=worker, args=(100,))
d = multiprocessing.Process(name='daemon', target=daemon)
d.daemon = True
nd = multiprocessing.Process(name='non-daemon', target=non_daemon)
w.start()
d.start()
nd.start()
print("the number of CPU is " + str(multiprocessing.cpu_count()))
print("All children processes:")
for p in multiprocessing.active_children():
print("child:" + p.name + ":" + str(p.pid))
print()
w.join()
#d.join()
运行结果:
可以从上面的例子看到没有多非daemon子进程使用join()方法,结果父进程没有等待非daemon进程结束就退出了。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
