首頁 後端開發 Python教學 使用IPython来操作Docker容器的入门指引

使用IPython来操作Docker容器的入门指引

Jun 06, 2016 am 11:24 AM
docker ipython python

Docker

现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它。
话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例。
这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython。
安装docker-py

首先需要docker-py。注意这里的案例中我将会使用Ubuntu Trusty 14.04版本。

$ pip install docker-py

登入後複製

IPyhton

我真的很喜欢用IPython来探索Python。 它像是一共高级的python Shell,但是可以做的更多。

$ sudo apt-get install ipython
SNIP!
$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.

IPython 1.2.1 -- An enhanced Interactive Python.
?     -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help   -> Python's own help system.
object?  -> Details about 'object', use 'object??' for extra details.

In [1]:

登入後複製

安装 docker

如果没有安装Docker,那首先安装docker

$ sudo apt-get install docker.io

登入後複製

然后把 docker.io 起个别名 docker

$ alias docker='docker.io'
$ docker version
Client version: 0.9.1
Go version (client): go1.2.1
Git commit (client): 3600720
Server version: 0.9.1
Git commit (server): 3600720
Go version (server): go1.2.1
Last stable version: 0.11.1, please update docker

登入後複製

Docker现在应该有个socket开启,我们可以用来连接。

$ ls /var/run/docker.sock
/var/run/docker.sock

登入後複製

Pull 镜像

让我们下载 busybox镜像

$ docker pull busybox
Pulling repository busybox
71e18d715071: Download complete
98b9fdab1cb6: Download complete
1277aa3f93b3: Download complete
6e0a2595b580: Download complete
511136ea3c5a: Download complete
b6c0d171b362: Download complete
8464f9ac64e8: Download complete
9798716626f6: Download complete
fc1343e2fca0: Download complete
f3c823ac7aa6: Download complete

登入後複製

现在我们准备使用 docker-py 了。

使用 docker-py

现在我们有了docker-py , IPython, Docker 和 busybox 镜像,我们就能建立一些容器。
如果你不是很熟悉IPython,可以参照这个教程学习(http://ipython.org/ipython-doc/stable/interactive/tutorial.html),
IPython是十分强大的。

首先启动一个IPython ,导入docker模块。

$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.

IPython 1.2.1 -- An enhanced Interactive Python.
?     -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help   -> Python's own help system.
object?  -> Details about 'object', use 'object??' for extra details.

In [1]: import docker

登入後複製

然后我们建立一个连接到Docker

In [2]: c = docker.Client(base_url='unix://var/run/docker.sock',
  ...:          version='1.9',
  ...:          timeout=10)

登入後複製

现在我们已经连接到Docker。

IPython使用tab键来补全的。 如果 输入 “c.” 然后按下tab键,IPython会显示Docker连接对象所有的方法和属性。

In [3]: c.
c.adapters           c.headers            c.pull
c.attach            c.history            c.push
c.attach_socket         c.hooks             c.put
c.auth             c.images            c.remove_container
c.base_url           c.import_image         c.remove_image
c.build             c.info             c.request
c.cert             c.insert            c.resolve_redirects
c.close             c.inspect_container       c.restart
c.commit            c.inspect_image         c.search
c.containers          c.kill             c.send
c.cookies            c.login             c.start
c.copy             c.logs             c.stop
c.create_container       c.max_redirects         c.stream
c.create_container_from_config c.mount             c.tag
c.delete            c.options            c.top
c.diff             c.params            c.trust_env
c.events            c.patch             c.verify
c.export            c.port             c.version
c.get              c.post             c.wait
c.get_adapter          c.prepare_request
c.head             c.proxies

登入後複製

让我们来看下c.images 我输入一个 “?”在c.之后,ipython 会提供这个对象的详细信息。

In [5]: c.images?
Type:    instancemethod
String Form:<bound method Client.images of <docker.client.Client object at 0x7f3acc731790>>
File:    /usr/local/lib/python2.7/dist-packages/docker/client.py
Definition: c.images(self, name=None, quiet=False, all=False, viz=False)
Docstring: <no docstring>

登入後複製

获取busybox 镜像。

In [6]: c.images(name="busybox")
Out[6]:
[{u'Created': 1401402591,
 u'Id': u'71e18d715071d6ba89a041d1e696b3d201e82a7525fbd35e2763b8e066a3e4de',
 u'ParentId': u'8464f9ac64e87252a91be3fbb99cee20cda3188de5365bec7975881f389be343',
 u'RepoTags': [u'busybox:buildroot-2013.08.1'],
 u'Size': 0,
 u'VirtualSize': 2489301},
 {u'Created': 1401402590,
 u'Id': u'1277aa3f93b3da774690bc4f0d8bf257ff372e23310b4a5d3803c180c0d64cd5',
 u'ParentId': u'f3c823ac7aa6ef78d83f19167d5e2592d2c7f208058bc70bf5629d4bb4ab996c',
 u'RepoTags': [u'busybox:ubuntu-14.04'],
 u'Size': 0,
 u'VirtualSize': 5609404},
 {u'Created': 1401402589,
 u'Id': u'6e0a2595b5807b4f8c109f3c6c5c3d59c9873a5650b51a4480b61428427ab5d8',
 u'ParentId': u'fc1343e2fca04a455f803ba66d1865739e0243aca6c9d5fd55f4f73f1e28456e',
 u'RepoTags': [u'busybox:ubuntu-12.04'],
 u'Size': 0,
 u'VirtualSize': 5454693},
 {u'Created': 1401402587,
 u'Id': u'98b9fdab1cb6e25411eea5c44241561326c336d3e0efae86e0239a1fe56fbfd4',
 u'ParentId': u'9798716626f6ae4e6b7f28451c0a1a603dc534fe5d9dd3900150114f89386216',
 u'RepoTags': [u'busybox:buildroot-2014.02', u'busybox:latest'],
 u'Size': 0,
 u'VirtualSize': 2433303}]

登入後複製

建立一个容器。 注意我添加一个可以将要运行的命令,这里用的是”env”命令。

In [8]: c.create_container(image="busybox", command="env")
Out[8]:
{u'Id': u'584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87',
 u'Warnings': None}

登入後複製

使用ID来启动这个容器

In [9]: c.start(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")

登入後複製

我们可以检查日志,应该可以看到当容器创建的时候 ,我们配置的”env”命令的输出。

In [11]: c.logs(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
Out[11]: 'HOME=/\nPATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\nHOSTNAME=584459a09e6d\n'

登入後複製

如果使用docker命令行,使用同样的命令行选项运行一个容器,应该可以看到类似的信息。

$ docker run busybox env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=ce3ad38a52bf

登入後複製

据我所知,docker-py没有运行选项,我们只能创建一个容器然后启动它。

以下是一个案例:

In [17]: busybox = c.create_container(image="busybox", command="echo hi")

In [18]: busybox&#63;
Type:    dict
String Form:{u'Id': u'34ede853ee0e95887ea333523d559efae7dcbe6ae7147aa971c544133a72e254', u'Warnings': None}
Length:   2
Docstring:
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
  (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
  d = {}
  for k, v in iterable:
    d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
  in the keyword argument list. For example: dict(one=1, two=2)

In [19]: c.start(busybox.get("Id"))

In [20]: c.logs(busybox.get("Id"))
Out[20]: 'hi\n'

登入後複製

如果你还没有使用过busybox镜像,我建议你使用下。我也建议debain下的jessie镜像,它只有120MB,比Ubuntu镜像要小。

总结

Docker是一个吸引人的新系统,可以用来建立有趣的新技术应用,特别是云服务相关的。使用IPython我们探索了怎么使用
docker-py模块来创建docker 容器。 现在使用python,我们可以结合docker和容易 创造出很多新的点子。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VSCode怎麼用 VSCode怎麼用 Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) 是一款跨平台、開源且免費的代碼編輯器,由微軟開發。它以輕量、可擴展性和對眾多編程語言的支持而著稱。要安裝 VSCode,請訪問官方網站下載並運行安裝程序。使用 VSCode 時,可以創建新項目、編輯代碼、調試代碼、導航項目、擴展 VSCode 和管理設置。 VSCode 適用於 Windows、macOS 和 Linux,支持多種編程語言,並通過 Marketplace 提供各種擴展。它的優勢包括輕量、可擴展性、廣泛的語言支持、豐富的功能和版

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles