Python中的Numeric包和Numarray包使用教程
要了解 Numerical Python 软件包的第一件事情是,Numerical Python 不会让您去做标准 Python 不能完成的任何工作。它只是让您 以快得多的速度去完成标准 Python 能够完成的相同任务。实际上不仅仅如此;许多数组操作用 Numeric 或者 Numarray 来表达比起用标准 Python 数据类型和语法来表达要优雅得多。不过,惊人的速度才是吸引用户使用 Numerical Python 的主要原因。
其实,Numerical Python 只是实现了一个新的数据类型:数组。与可以包含不同类型元素的列表、元组和词典不同的是,Numarray 数组只能包含同一类型的数据。Numarray 数组的另一个优点是,它可以是多维的 -- 但是数组的维度与列表的简单嵌套稍有不同。Numerical Python 借鉴了程序员的实践经验(尤其是那些有科学计算背景的程序员,他们抽象出了 APL、FORTRAN、MATLAB 和 S 等语言中数组的最佳功能),创建了可以灵活改变形状和维度的数组。我们很快会回来继续这一话题。
在 Numerical Python 中对数组的操作是 按元素进行的。虽然二维数组与线性代数中的矩阵类似,但是对它们的操作 (比如乘) 与线性代数中的操作 (比如矩阵乘) 是完全不同的。
让我们来看一个关于上述问题的的具体例子。在纯 Python 中,您可以这样创建一个“二维列表”:
清单 1. Python 的嵌套数组
>>> pyarr = [[1,2,3], ... [4,5,6], ... [7,8,9]] >>> print pyarr [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> pyarr[1][1] = 0 >>> print pyarr [[1, 2, 3], [4, 0, 6], [7, 8, 9]]
很好,但是您对这种结构所能做的只是通过单独的 (或者多维的) 索引来设置和检索元素。与此相比,Numarray 数组要更灵活:
清单 2. Numerical Python 数组
>>> from numarray import * >>> numarr = array(pyarr) >>> print numarr [[1 2 3] [4 0 6] [7 8 9]]
改变并不大,但是使用 Numarray 进行的操作如何呢? 下面是一个例子:
清单 3. 元素操作
>>> numarr2 = numarr * 2 >>> print numarr2 [[ 2 4 6] [ 8 0 12] [14 16 18]] >>> print numarr2 + numarr [[ 3 6 9] [12 0 18] [21 24 27]]
改变数组的形状:
清单 4. 改变形状
>>> numarr2.shape = (9,) >>> print numarr2 [ 2 4 6 8 0 12 14 16 18]
Numeric 与 Numarray 之间的区别
总体来看,新的 Numarray 软件包与早期的 Numeric 是 API 兼容的。不过,开发者基于用户经验进行了一些与 Numric 并不兼容的改进。开发者没有破坏任何依赖于 Numeric 的应用程序,而是开创了一个叫做 Numarray 的新项目。在完成本文时,Numarray 还缺少 Numeric 的一些功能,但是已计划实现这些功能。
Numarray 所做的一些改进:
- 以分层的类结构来组织元素类型,以支持 isinstance() 检验。Numeric 在指定数据类型时只使用字符类型编码 (但是 Numarray 中的初始化软件仍然接受老的字符编码)。
- 改变了类型强制规则,以保持数组(更为常见)中的类型 ,而不是转换为 Python 标量的类型。
- 出现了附加的数组属性 (不再只有 getter 和 setter)。
- 实现了更灵活的异常处理。
新用户不必担心这些变化,就这一点来说,最好一开始就使用 Numarray 而不是 Numeric。
计时的例子
让我们来感受一下在 Numerical Python 中的操作相对于标准 Python 的速度优势。作为一个“演示任务”,我们将创建一个数字序列,然后使它们加倍。首先是标准 Python 方法的一些变体:
清单 5. 对纯 Python 操作的计时
def timer(fun, n, comment=""): from time import clock start = clock() print comment, len(fun(n)), "elements", print "in %.2f seconds" % (clock()-start) def double1(n): return map(lambda n: 2*n, xrange(n)) timer(double1, 5000000, "Running map() on xrange iterator:") def double2(n): return [2*n for n in xrange(n)] timer(double2, 5000000, "Running listcomp on xrange iter: ") def double3(n): double = [] for n in xrange(n): double.append(2*n) return double timer(double3, 5000000, "Building new list from iterator: ")
我们可以看出 map() 方法、list comprehension 和传统循环方法之间的速度差别。那么,需要同类元素类型的标准 array 模块呢?它可能会更快一些:
清单 6. 对标准 array 模块的计时
import array def double4(n): return [2*n for n in array.array('i',range(n))] timer(double4, 5000000, "Running listcomp on array.array: ")
最后我们来看 Numarray 的速度如何。作为额外对照,我们来看如果必须要将数组还原为一个标准的列表时,它是否同样具有优势:
清单 7. 对 Numarray 操作的计时
from numarray import * def double5(n): return 2*arange(n) timer(double5, 5000000, "Numarray scalar multiplication: ") def double6(n): return (2*arange(n)).tolist() timer(double6, 5000000, "Numarray mult, returning list: ")
现在运行它:
清单 8. 比较结果
$ python2.3 timing.py Running map() on xrange iterator: 5000000 elements in 13.61 seconds Running listcomp on xrange iter: 5000000 elements in 16.46 seconds Building new list from iterator: 5000000 elements in 20.13 seconds Running listcomp on array.array: 5000000 elements in 25.58 seconds Numarray scalar multiplication: 5000000 elements in 0.61 seconds Numarray mult, returning list: 5000000 elements in 3.70 seconds
处理列表的不同技术之间的速度差异不大,也许还是值得注意,因为这是尝试标准的 array 模块时的方法问题。但是 Numarray 一般用不到 1/20 的时间内就可以完成操作。将数组还原为标准列表损失了很大的速度优势。
不应通过这样一个简单的比较就得出结论,但是这种加速可能是典型的。对大规模科学计算来说,将计算的时间由几个月下降到几天或者从几天下降到几个小时,是非常有价值的。
系统建模
Numerical Python 的典型用例是科学建模,或者可能是相关领域,比如图形处理和旋转,或者信号处理。我将通过一个比较实际的问题来说明 Numarray 的许多功能。假设您有一个参量可变的三维物理空间。抽象地说,任何参数化空间,不论有多少维,Numarray 都适用。实际上很容易想像,比如一个房间,它的各个点的温度是不同的。我在 New England 的家已经到了冬天,因而这个问题似乎更有现实意义。
为简单起见,下面我给出的例子中使用的是较小的数组(虽然这可能是显然的,但是还是有必要明确地指出来)。不过,即使是处理有上百万个元素而不仅仅是几十个元素的数组,Numarray 也还是很快;前者可能在真正的科学模型中更为常见。
首先,我们来创建一个“房间”。有很多方法可以完成这项任务,但是最常用的还是使用可调用的 array() 方法。使用这个方法,我们可以生成具有多种初始化参数 (包括来自任何 Python 序列的初始数据) 的 Numerical 数组。不过对于我们的房间来说,用 zeros() 函数就可以生成一个温度均匀的寒冷房间:
清单 9. 初始化房间的温度
>>> from numarray import * >>> room = zeros((4,3,5),Float) >>> print room [[[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]]]
自上而下每一个二维的“矩阵”代表三维房间的一个水平层面。
首先,我们将整个房间的温度提高到比较舒适的 70 华氏度 (大约是 20 摄氏度):
清单 10. 打开加热器
>>> room += 70 >>> print room [[[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]]]
请注意,在我们接下来对 Numarray 数组和 Python 列表进行操作时有很重要的区别。当您选取数组的层面时 -- 我们将会看到,多维数组中的分层方法非常灵活且强大 -- 您得到的不是一个拷贝而是一个“视图”。指向相同的数据可以有多种途径。
让我们具体来看。假设我们房间有一个通风装置,会将地面的温度降低四度:
清单 11. 温度的变化
>>> floor = room[3] >>> floor -= 4 >>> print room [[[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 66. 66. 66. 66. 66.] [ 66. 66. 66. 66. 66.] [ 66. 66. 66. 66. 66.]]]
与此相对,北面墙上的壁炉将每个邻近位置的温度升高了 8 度,而它所在位置的温度为 90 度。
清单 12. 使用壁炉取暖
>>> north = room[:,0] >>> near_fireplace = north[2:4,2:5] >>> near_fireplace += 8 >>> north[3,2] = 90 # the fireplace cell itself >>> print room [[[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 70. 78. 78. 78. 70.] [ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.]] [[ 66. 74. 90. 74. 66.] [ 66. 66. 66. 66. 66.] [ 66. 66. 66. 66. 66.]]]
这里我们使用了一些比较巧妙的索引方法,可以沿多维的方向来指定层面。这些视图应该保留,以后还会用到。例如,您可能希望知道整个北面墙上的当前温度:
清单 13. 查看北面的墙
>>> print north [[ 70. 70. 70. 70. 70.] [ 70. 70. 70. 70. 70.] [ 70. 78. 78. 78. 70.] [ 66. 74. 90. 74. 66.]]
更多操作
以上介绍的仅仅是 Numarray 中便捷的函数和数组方法/属性中的一小部分。我希望能给您一些初步的认识;Numarray 文档是深入学习的极好参考资料。
既然我们的房间现在各处的温度不再相同,我们可能需要判断全局的状态。例如,当前房间内的平均温度:
清单 14. 查看平均化后的数组
>>> add.reduce(room.flat)/len(room.flat) 70.066666666666663
这里需要解释一下。您可以对数组进行的所有操作都有相对应的 通用函数 (ufunc)。所以,我们在前面的代码中使用的 floor -= 4 ,可以替换为 subtract(floor,4,floor) 。指定 subtract() 的三个参数,操作就可以正确完成。您还可以用 floor=subtract(floor,4) 来创建 floor 的一个拷贝,但这可能不是您所期望的,因为变化将发生在一个新的数组中,而不是 room 的一个子集中。
然而,unfunc 不仅仅是函数。它们还可以是可调用的对象,具有自己的方法:其中 .reduce() 可能是最为有用的一个。 reduce() 的工作方式如同 Python 中的内置函数 reduce() ,每个操作都是基本的 ufunc (不过这些方法在应用于 Numerical 数组时会快得多)。换句话说, add.reduce() 表示的是 sum() , multiply.reduce() 表示的是 product() (这些快捷名称也是定义好了的)。
在求房间各单元温度的和之前,您需要先得到数据的一个一维视图。不然,您得到的是第一维的和,并生成一个降低了维数的新数组。例如:
清单 15. 非平面数组的错误结果
>>> add.reduce(room) array([[ 276., 292., 308., 292., 276.], [ 276., 276., 276., 276., 276.], [ 276., 276., 276., 276., 276.]])
这样一个空间和可能会有用,但它并不是我们这里想要得到的。
既然我们是在对一个物理系统建模,我们来让它更真实一些。房间内有微小的气流,使得温度发生变化。在建模时我们可以假设每一个小的时间段内,每个单元会根据它周围的温度进行调整:
清单 16. 微气流模拟
>>> def equalize(room): ... z,y,x = map(randint, (1,1,1), room.shape) ... zmin,ymin,xmin = maximum([z-2,y-2,x-2],[0,0,0]).tolist() ... zmax,ymax,xmax = [z+1,y+1,x+1] ... region = room[zmin:zmax,ymin:ymax,xmin:xmax].copy() ... room[z-1,y-1,x-1] = sum(region.flat)/len(region.flat) ... return room
这个模型当然有一些不现实:单元不会只根据它周围的温度进行调整而不去影响它相邻的单元。尽管如此,还是让我们来看一下它执行的情况。首先我们选择一个随机的单元 -- 或者实际上我们选取的是单元本身在每一维度上的索引值加上 1,因为我们通过 .shape 调用得到的是长度而不是最大的索引值。 zmin 、 ymin 和 xmin 确保了我们的最小值索引值为 0,不会取到负数; zmax 、 ymax 和 xmax 实际上并不需要,因为数组每一维的大小减去 1 之后的索引值就被当作最大值来使用(如同 Python 中的列表)。
然后,我们需要定义邻近单元的区域。由于我们的房间很小,所以经常会选择到房间的表面、边沿或者一角 -- 单元的 region 可能会比最大的 27 元素 (3x3x3) 子集要小。这没关系;我们只需要使用正确的分母来计算平均值。这个新的平均温度值被赋给前面随机选择的单元。
您可以在您的模型中执行任意多次的平均化过程。每一次调用只调整一个单元。多次调用会使用房间的某些部分的温度逐渐趋于平均。即使数组是动态改变的, equalize() 函数照样可以返回它的数组。当您只想平均化模型的一个 拷贝时这将非常有用:
清单 17. 执行 equalize()
>>> print equalize(room.copy()) [[[ 70. 70. 70. 70. 70. ] [ 70. 70. 70. 70. 70. ] [ 70. 70. 70. 70. 70. ]] [[ 70. 70. 71.333333 70. 70. ] [ 70. 70. 70. 70. 70. ] [ 70. 70. 70. 70. 70. ]] [[ 70. 78. 78. 78. 70. ] [ 70. 70. 70. 70. 70. ] [ 70. 70. 70. 70. 70. ]] [[ 66. 74. 90. 74. 66. ] [ 66. 66. 66. 66. 66. ] [ 66. 66. 66. 68. 66. ]]]
结束语
本文仅介绍了 Numarray 的部分功能。它的功能远不止这些。例如,您可以使用填充函数来填充数组,这对于物理模型来说非常有用。您不但可以通过层面而且可以通过索引数组来指定数组的子集 -- 这使您不但可以对数组中不连续的片断进行操作,而且可以 -- 通过 take() 函数 -- 以各种方式重新定义数组的维数和形状。
前面我所描述的大部分操作都是针对于标量和数组的;您还可以执行数组之间的操作,包括那些不同维度的数组之间。这涉及到的内容很多,但通过 API 可以直观地完成所有这些操作。
我鼓励您在自己的系统上安装 Numarray 和 / 或 Numeric。它不难上手,并且它提供的对数组的快速操作可以应用于极广泛的领域 -- 往往是您开始时意想不到的。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

CentOS 安裝 Nginx 需要遵循以下步驟:安裝依賴包,如開發工具、pcre-devel 和 openssl-devel。下載 Nginx 源碼包,解壓後編譯安裝,並指定安裝路徑為 /usr/local/nginx。創建 Nginx 用戶和用戶組,並設置權限。修改配置文件 nginx.conf,配置監聽端口和域名/IP 地址。啟動 Nginx 服務。需要注意常見的錯誤,如依賴問題、端口衝突和配置文件錯誤。性能優化需要根據具體情況調整,如開啟緩存和調整 worker 進程數量。
