首頁 後端開發 Python教學 进一步了解Python中的XML 工具

进一步了解Python中的XML 工具

Jun 06, 2016 am 11:24 AM
python

模块:xmllib

xmllib 是一个非验证的低级语法分析器。应用程序员使用的 xmllib 可以覆盖 XMLParser 类,并提供处理文档元素(如特定或类属标记,或字符实体)的方法。从 Python 1.5x 到 Python 2.0+ 以来, xmllib 的使用方法并没变化;在绝大多数情况下更好的选择是使用 SAX 技术,它也是种面向流的技术,对语言和开发者来说更为标准。

本文中的示例与原来专栏中的相同:包括一个叫做 quotations.dtd 的 DTD 以及这个 DTD 的文档 sample.xml (请参阅 参考资料,以获取本文中提到的文件的档案)。以下的代码显示了 sample.xml 中每段引言的前几行,并生成了非常简单的未知标记和实体的 ASCII 指示符。经过分析的文本作为连续流来处理,所使用的任何累加器都由程序员负责(如标记中的字符串 (#PCDATA),或所遇到的标记的列表或词典)。
清单 1: try_xmllib.py

import
         xmllib, string
    
    classQuotationParser

        (xmllib.XMLParser):
  """Crude xmllib extractor for quotations.dtd document"""
  
    
    def__init__

        (self):
    xmllib.XMLParser.__init__(self)
    self.thisquote = ''       
    
    # quotation accumulator
     
     
     defhandle_data

        (self, data):
    self.thisquote = self.thisquote + data
  
    
    defsyntax_error
        (self, message):
    
    
    pass
  defstart_quotations
        (self, attrs): 
    
    # top level tag
         
     
     print

         '--- Begin Document ---'
  
    
    defstart_quotation
        (self, attrs):
    
    
    print
         'QUOTATION:'
  
    
    defend_quotation
        (self):
    
    
    print

         string.join(string.split(self.thisquote[:230]))+'...',
    
    
    print

         '('+str(len(self.thisquote))+' bytes)\n'
    self.thisquote = ''
  
    
    defunknown_starttag

        (self, tag, attrs):
    self.thisquote = self.thisquote + '{'
  
    
    defunknown_endtag

        (self, tag):
    self.thisquote = self.thisquote + '}'
  
    
    defunknown_charref

        (self, ref):
    self.thisquote = self.thisquote + '?'
  
    
    defunknown_entityref

        (self, ref):
    self.thisquote = self.thisquote + '#'
    
    if

         __name__ == '__main__':
  parser = QuotationParser()
  
    
    for
         c 
    
    in
         open("sample.xml").read():
    parser.feed(c)
  parser.close()

登入後複製


验证

您可能需要展望标准 XML 支持的未来的原因是,在进行语法分析的同时需要进行验证。不幸的是,标准 Python 2.0 XML 包并不包括验证型语法分析器。

xmlproc 是 python 原有的语法分析器,它执行几乎完整的验证。如果需要验证型语法分析器, xmlproc 是 Python 当前唯一的选择。而且, xmlproc 提供其它语法分析器所不具备的各种高级和测试接口。


选择一种语法分析器

如果决定使用 XML 的简单 API (SAX) -- 它应该用于复杂的事物,因为其它大部分工具都是在它的基础上建立的 -- 将为您完成许多语法分析器的分类工作。 xml.sax 模块包含一个自动选择“最佳”语法分析器的设施。在标准 Python 2.0 安装中,唯一能选择的语法分析器是 expat ,它是种 C 语言编写的快速扩展。然而,也可以在 $PYTHONLIB/xml/parsers 下安装另一个语法分析器,以备选择。设置语法分析器很简单:
清单 2: Python 选择最佳语法分析器的语句

import
         xml.sax
parser = xml.sax.make_parser()

登入後複製

您还可以通过传递参数来选择特定的语法分析器;但考虑到可移植性 -- 也为了对今后更好的语法分析器的向上兼容性 -- 最佳方法是使用 make_parser() 来完成工作。

您可以直接导入 xml.parsers.expat 。如果这样做,您就能获得 SAX 界面并不提供的一些特殊技巧。这样, xml.parsers.expat 与 SAX 相比有些“低级”。但 SAX 技术非常标准,对面向流的处理也非常好;大多数情况下 SAX 的级别正合适。通常情况下,由于 make_parser() 函数已经能获得 expat 提供的性能,因此纯速度的差异很小。


什么是 SAX

考虑到背景因素,回答什么是 SAX 的较好答案是:

SAX (XML 的简单 API)是 XML 语法分析器的公用语法分析器接口。它允许应用程序作者编写使用 XML 语法分析器的应用程序,但是它却独立于所使用的语法分析器。(将它看作 XML 的 JDBC。)(Lars Marius Garshol,SAX for Python)

SAX -- 如同它提供的语法分析器模块的 API -- 基本上是一个 XML 文档的顺序处理器。使用它的方法与 xmllib 示例极其相似,但更加抽象。应用程序员将定义一个 handler 类,而不是语法分析器类,该 handler 类能注册到任何所使用的语法分析器中。必须定义 4 个 SAX 接口(每个接口都有几个方法):DocumentHandler、DTDHandler、EntityResolver 和 ErrorHandler。创建语法分析器除非被覆盖,否则它还连接默认接口。这些代码执行与 xmllib 示例相同的任务:
清单 3: try_sax.py

"Simple SAX example, updated for Python 2.0+"
    
    import
         string
    
    import
         xml.sax
    
    from
         xml.sax.handler 
    
    import
         *
    
    classQuotationHandler

        
  (ContentHandler):
  """Crude extractor for quotations.dtd compliant XML document"""
  
    
    def__init__

        
  (self):
    self.in_quote = 0
    self.thisquote = ''
  
    
    defstartDocument
        
  (self):
    
    
    print

         '--- Begin Document ---'
  
    
    defstartElement

        
  (self, name, attrs):
    
    
    if

         name == 'quotation':
      
    
    print

         'QUOTATION:'
      self.in_quote = 1
    
    
    else:
    
    
      self.thisquote = self.thisquote + '{'
  
    
    defendElement

        
  (self, name):
    
    
    if

         name == 'quotation':
      
    
    print

         string.join(string.split(self.thisquote[:230]))+'...',
      
    
    print

         '('+str(len(self.thisquote))+' bytes)\n'
      self.thisquote = ''
      self.in_quote = 0
    
    
    else:
    
    
      self.thisquote = self.thisquote + '}'
  
    
    defcharacters
        
  (self, ch):
    
    
    if

         self.in_quote:
      self.thisquote = self.thisquote + ch
    
    if
         __name__ == '__main__':
  parser = xml.sax.make_parser()
  handler = QuotationHandler()
  parser.setContentHandler(handler)
  parser.parse("sample.xml")

登入後複製

与 xmllib 相比,上述示例中要注意两件小事: .parse() 方法处理整个流或字符串,所以不必为语法分析器创建循环; .parse() 同样能灵活地接收一个文件名、一个文件对象,或是众多的类文件对象(一些具有 .read() 方式)。


包:DOM

DOM 是一种 XML 文档的高级树型表示。该模型并非只针对 Python,而是一种普通 XML 模型(请参阅 参考资料以获取进一步信息)。Python 的 DOM 包是基于 SAX 构建的,并且包括在 Python 2.0 的标准 XML 支持里。由于篇幅所限,没有将代码示例加到本文中,但在 XML-SIG 的 "Python/XML HOWTO" 中给出了一个极好的总体描述:

文档对象模型为 XML 文档指定了树型表示。顶级文档实例是树的根,它只有一个子代,即顶级元素实例;这个元素有表示内容和子元素的子节点,他们也可以有子代,以此类推。定义的函数允许随意遍历结果树,访问元素和属性值,插入和删除节点,以及将树转换回 XML。

DOM 可以用于修改 XML 文档,因为可以创建一棵 DOM 树,通过添加新节点和来回移动子树来修改这棵树,然后生成一个新的 XML 文档作为输出。您也可以自己构造一棵 DOM 树,然后将它转换成 XML;用这种方法生成 XML 输出比仅将 ... 写入文件的方法更灵活。

使用 xml.dom 模块的语法与早期的文章相比有了一些变动。Python 2.0 中自带的 DOM 实现被称为 xml.dom.minidom ,并提供轻量级和小型版本的 DOM。显然,完整的 XML-SIG 的 DOM 中有些试验性的特性并未被放入 xml.dom.minidom 中,但大家并不会注意到这一点。

生成 DOM 对象很简单;只需:
清单 4: 在 XML 文件中创建 Python DOM 对象

from
         xml.dom.minidom 
    
    import

         parse, parseString
dom1 = parse('mydata.xml') 
    
    # parse an XML file by name

登入後複製

使用 DOM 对象是种非常直接的 OOP 模式的工作。然而,经常在无法立刻简单区分的层级(除了循环列举)中碰到许多类似清单的属性。例如,以下是一段普通的 DOM Python 代码片断:
清单 5: 通过 Python DOM 节点对象的迭代

for
         node 
    
    in
         dom_node.childNodes:
  
    
    if

         node.nodeName == '#text':   
    
    # PCDATA is a kind of node,
    PCDATA = node.nodeValue    
    
    # but not a new subtag
     
     
     elif

         node.nodeName == 'spam':
    spam_node_list.append(node) 
    
    # Create list of <spam> nodes

登入後複製

Python 标准说明文档中有一些更详细的 DOM 示例。我的早期文章中有关使用 DOM 对象的示例(请参阅 参考资料)指出的方向仍然是正确的,但是文章发布后至今,一些方法和属性名称以更改,因此请查阅一下 Python 的说明文档。


模块: pyxie

pyxie 模块是在 Python 标准 XML 支持之上构建的,它为 XML 文档提供了附加的高级接口。 pyxie 将完成两项基本操作:它将 XML 文档转换成一种更易于进行语法分析的基于行的格式;并且它提供了将 XML 文档当作可操作树处理的方法。 pyxie 所使用的基于行的 PYX 格式是不受语言限制的,其工具适用于几种语言。总之,文档的 PYX 表示与其 XML 表示相比,更易于使用常见的基于行的文本处理工具进行处理,如 grep、sed、awk、bash、perl,或标准 python 模块,如 string 和 re 。根据结果,从 XML 转换到 PYX 可能节省许多工作。

pyxie 将 XML 文档当作树处理的概念与 DOM 中的思路相似。由于 DOM 标准得到许多编程语言的广泛支持,那么如果 XML 文档的树型表示是必需的,大多数程序员会使用 DOM 标准而非 pyxie 。


更多模块: xml_pickle 和 xml_objectify

我自行开发了处理 XML 的高级模块,称为 xml_pickle 和 xml_objectify 。我还在其它地方写过许多类似模块(请参阅 参考资料),在此不必做过多的介绍。当你“用 Python 思考”而不是“用 XML 思考”时,这些模块非常有用。特别是 xml_objectify 自身对程序员隐藏了几乎所有的 XML 线索,使您在程序中充分使用 Python “原始”对象。实际的 XML 数据格式几乎被抽象得不可见。同样, xml_pickle 使 Python 程序员以“原始” Python 对象开始,该对象的数据可以来源于任何源代码,然后把它们(连续地)放入其他用户以后可能需要的 XML 格式。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1662
14
CakePHP 教程
1419
52
Laravel 教程
1311
25
PHP教程
1262
29
C# 教程
1234
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles