首頁 後端開發 Python教學 使用70行Python代码实现一个递归下降解析器的教程

使用70行Python代码实现一个递归下降解析器的教程

Jun 06, 2016 am 11:26 AM
python

 第一步:标记化

处理表达式的第一步就是将其转化为包含一个个独立符号的列表。这一步很简单,且不是本文的重点,因此在此处我省略了很多。
首先,我定义了一些标记(数字不在此中,它们是默认的标记)和一个标记类型:
 

token_map = {'+':'ADD', '-':'ADD',
       '*':'MUL', '/':'MUL',
       '(':'LPAR', ')':'RPAR'}
 
Token = namedtuple('Token', ['name', 'value'])
登入後複製

下面就是我用来标记 `expr` 表达式的代码:

split_expr = re.findall('[\d.]+|[%s]' % ''.join(token_map), expr)
tokens = [Token(token_map.get(x, 'NUM'), x) for x in split_expr]
登入後複製

第一行是将表达式分割为基本标记的技巧,因此

'1.2 / ( 11+3)' --> ['1.2', '/', '(', '11', '+', '3', ')']
登入後複製

下一行命名标记,这样分析器就能通过分类识别它们:

['1.2', '/', '(', '11', '+', '3', ')']
->
[Token(name='NUM', value='1.2'), Token(name='MUL', value='/'), Token(name='LPAR', value='('), Token(name='NUM', value='11'), Token(name='ADD', value='+'), Token(name='NUM', value='3'), Token(name='RPAR', value=')')]
登入後複製

任何不在 token_map 中的标记被假定为数字。我们的分词器缺少称为验证的属性,以防止非数字被接受,但幸运的是,运算器将在以后处理它。
就是这样
第二步: 语法定义

我选择的解析器实现自一个本地垂直解析器,其来源于LL解析器的一个简单版本。它是一个最简单的解析器实现,事实上,只有仅仅14行代码。它是一种自上而下的解析器,这意味着解析器从最上层规则开始解析(like:expression),然后以递归方式尝试按照其子规则方式解析,直至符合最下层的规则(like:number)。换句话解释,当自底向上解析器(LR)逐步地收缩标记,使规则被包含在其它规则中,直到最后仅剩下一个规则,而自顶向下解析器(LL)逐步展开规则并进入到少数的抽象规则,直到它能够完全匹配输入的标记。
在深入到实际的解析器实现之前,我们可对语法进行讨论。在我之前发表的文章中,我使用过LR解析器,我可以像如下方式定义计算器语法(标记使用大写字母表示):

add: add ADD mul | mul;
mul: mul MUL atom | atom;
atom: NUM | '(' add ')' | neg;
neg: '-' atom;
登入後複製


(如果您还不理解上述语法,请阅读我之前发表的文章)

现在我使用LL解析器,以如下方式定义计算器的语法:

rule_map = {
  'add' : ['mul ADD add', 'mul'],
  'mul' : ['atom MUL mul', 'atom'],
  'atom': ['NUM', 'LPAR add RPAR', 'neg'],
  'neg' : ['ADD atom'],
}
登入後複製

大家可以看到,这里有一个微妙的变化。有关"add and mul"的递归定义被反转了。这是个非常重要的细节,我会向大家详细说明这一点。

LR版本使用了左递归的模式。当LL解析器遇到递归的时候,它会尝试去匹配规则。所以,当左递归发生是,解析器会进入无穷递归。甚至连聪明的LL解析器例如ANTLR也逃避不了这个问题,它会以友好的错误提示代替无穷的递归,而不像我们这个玩具解析器那样。

左递归可以很容易的转变为右递归,我就这么做的。但是解析器并不是那么简单,它又会产生另一个问题:当左递归正确的解析 3-2-1 为(3-2)-1,而右递归却错误的解析为3-(2-1)。我还没想到一个简单的解决办法,所以为了让事情简单,我决定让它继续使用错误的解析格式,并在后面处理这个问题(请看步骤4)

第三步:解析为一个AST

算法其实很简单。我们会定义一个接收两个参数的递归方法:第一个参数是我们要尝试匹配的规则名称,第二个参数是我们要保留的标识列表。我们从add(最上层规则)方法开始,其已包含完整的标识列表,递归调用已非常明确。方法将返回一个数组,其包含元素为:一个是当前匹配项,另一个是保留匹配的标识列表。我们将实现标识匹配功能,以使这段代码可用(它们都是字符串类型;一个是大写格式,另一个是小写格式)。

以下是解析器实现的代码:

RuleMatch = namedtuple('RuleMatch', ['name', 'matched'])
 
def match(rule_name, tokens):
  if tokens and rule_name == tokens[0].name:   # 是否匹配标识?
    return RuleMatch(tokens[0], tokens[1:])
  for expansion in rule_map.get(rule_name, ()):  # 是否匹配规则?
    remaining_tokens = tokens
    matched_subrules = []
    for subrule in expansion.split():
      matched, remaining_tokens = match(subrule, remaining_tokens)
      if not matched:
        break  # 运气不好,跳出循环,处理下一个扩展定义!
      matched_subrules.append(matched)
    else:
      return RuleMatch(rule_name, matched_subrules), remaining_tokens
  return None, None  # 无匹配结果
登入後複製

代码4至5行说明:如果规则名称(rule_name)确实是一个标识,并被包含在标识列表(tokens)中,同时检查其是否匹配当前标识。如果是,表达式将返回匹配方法,标识列表任然进行使用。

代码第6行说明:迭代将循环检查是否匹配该规则名称对应的子规则,通过递归实现每条子规则的匹配。如果规则名称满足匹配标识的条件,get()方法将返回一个空数组,同时代码将返回空值(见16行)。


第9-15行,实现迭代当前的sub-rule,并尝试顺序地匹配他们。每次迭代都尽可能多的匹配标识。如果某一个标识无法匹配,我们就会放弃整个sub-rule。但是,如果所有的标识都匹配成功,我们就到达else语句,并返回rule_name的匹配值,还有剩下标识。

现在运行并看看1.2/(11+3)的结果。

>>> tokens = [Token(name='NUM', value='1.2'), Token(name='MUL', value='/'), Token(name='LPAR', value='('), Token (name='NUM', value='11'), Token(name='ADD', value='+'), Token(name='NUM', value='3'), Token(name='RPAR', value=')')]
 
>>> match('add', tokens)
 
(RuleMatch(name='add', matched=[RuleMatch(name='mul', matched=[RuleMatch(name='atom', matched=[Token(name='NUM', value='1.2')]), Token(name='MUL', value='/'), RuleMatch(name='mul', matched=[RuleMatch(name='atom', matched=[Token(name='LPAR', value='('), RuleMatch(name='add', matched=[RuleMatch(name='mul', matched=[RuleMatch(name='atom', matched=[Token(name='NUM', value='11')])]), Token(name='ADD', value='+'), RuleMatch(name='add', matched=[RuleMatch(name='mul', matched=[RuleMatch(name='atom', matched=[Token(name='NUM', value='3')])])])]), Token(name='RPAR', value=')')])])])]), [])
登入後複製

结果是一个tuple,当然我们并没有看到有剩下的标识。匹配结果并不易于阅读,所以让我吧结果画成一个图:

add
  mul
    atom
      NUM '1.2'
    MUL '/'
    mul
      atom
        LPAR  '('
        add
          mul
            atom
              NUM '11'
          ADD '+'
          add
            mul
              atom
                NUM '3'
        RPAR  ')'
登入後複製

这就是概念上的AST。通过你思维逻辑,或者在纸上描绘,想象解析器是如何运作的,这样是个很好的锻炼。我不敢说这样是必须的,除非你想神交。你可以通过AST来帮助你实现正确的算法。

到目前为止,我们已经完成了可以处理二进制运算,一元运算,括号和操作符优先权的解析器。

现在只剩下一个错误待解决,下面的步骤我们将解决这个错误。

第四步:后续处理

我的解析器并非在任何场合管用。最重要的一点是,它并不能处理左递归,迫使我把代码写成右递归方式。这样导致,解析 8/4/2 这个表达式的时候,AST结果如下:

add
  mul
    atom
      NUM 8
    MUL '/'
    mul
      atom
        NUM 4
      MUL '/'
      mul
        atom
          NUM 2
登入後複製

如果我们尝试通过AST计算结果,我们将会优先计算4/2,这当然是错误的。一些LL解析器选择修正树里面的关联性。这样需要编写多行代码;)。这个不采纳,我们需要使它扁平化。算法很简单:对于AST里面的每个规则 1)需要修正 2)是一个二进制运算 (拥有sub-rules)3) 右边的操作符同样的规则:使后者扁平成前者。通过“扁平”,我意思是在其父节点的上下文中,通过节点的儿子代替这个节点。因为我们的穿越是DFS是后序的,意味着它从树的边缘开始,并一直到达树根,效果将会累加。如下是代码:

fix_assoc_rules = 'add', 'mul'
 
def _recurse_tree(tree, func):
  return map(func, tree.matched) if tree.name in rule_map else tree[1]
 
def flatten_right_associativity(tree):
  new = _recurse_tree(tree, flatten_right_associativity)
  if tree.name in fix_assoc_rules and len(new)==3 and new[2].name==tree.name:
    new[-1:] = new[-1].matched
  return RuleMatch(tree.name, new)
登入後複製

这段代码可以让任何结构的加法或乘法表达式变成一个平面列表(不会混淆)。括号会破坏顺序,当然,它们不会受到影响。

基于以上的这些,我可以把代码重构成左关联:

def build_left_associativity(tree):
  new_nodes = _recurse_tree(tree, build_left_associativity)
  if tree.name in fix_assoc_rules:
    while len(new_nodes)>3:
      new_nodes[:3] = [RuleMatch(tree.name, new_nodes[:3])]
  return RuleMatch(tree.name, new_nodes)
登入後複製

但是,我并不会这样做。我需要更少的代码,并且把计算代码换成处理列表会比重构整棵树需要更少的代码。

第五步:运算器

对树的运算非常简单。只需用与后处理的代码相似的方式对树进行遍历(即 DFS 后序),并按照其中的每条规则进行运算。对于运算器,因为我们使用了递归算法,所以每条规则必须只包含数字和操作符。代码如下:

bin_calc_map = {'*':mul, '/':div, '+':add, '-':sub}
def calc_binary(x):
  while len(x) > 1:
    x[:3] = [ bin_calc_map[x[1]](x[0], x[2]) ]
  return x[0]
 
calc_map = {
  'NUM' : float,
  'atom': lambda x: x[len(x)!=1],
  'neg' : lambda (op,num): (num,-num)[op=='-'],
  'mul' : calc_binary,
  'add' : calc_binary,
}
 
def evaluate(tree):
  solutions = _recurse_tree(tree, evaluate)
  return calc_map.get(tree.name, lambda x:x)(solutions)
登入後複製

我使用 calc_binary 函数进行加法和减法运算(以及它们的同阶运算)。它以左结合的方式计算列表中的这些运算,这使得我们的 LL语法不太容易获取结果。

第六步:REPL

最朴实的REPL:

if __name__ == '__main__':
  while True:
    print( calc(raw_input('> ')) )
登入後複製

不要让我解释它 :)
附录:将它们合并:一个70行的计算器

'''A Calculator Implemented With A Top-Down, Recursive-Descent Parser'''
# Author: Erez Shinan, Dec 2012
 
import re, collections
from operator import add,sub,mul,div
 
Token = collections.namedtuple('Token', ['name', 'value'])
RuleMatch = collections.namedtuple('RuleMatch', ['name', 'matched'])
 
token_map = {'+':'ADD', '-':'ADD', '*':'MUL', '/':'MUL', '(':'LPAR', ')':'RPAR'}
rule_map = {
  'add' : ['mul ADD add', 'mul'],
  'mul' : ['atom MUL mul', 'atom'],
  'atom': ['NUM', 'LPAR add RPAR', 'neg'],
  'neg' : ['ADD atom'],
}
fix_assoc_rules = 'add', 'mul'
 
bin_calc_map = {'*':mul, '/':div, '+':add, '-':sub}
def calc_binary(x):
  while len(x) > 1:
    x[:3] = [ bin_calc_map[x[1]](x[0], x[2]) ]
  return x[0]
 
calc_map = {
  'NUM' : float,
  'atom': lambda x: x[len(x)!=1],
  'neg' : lambda (op,num): (num,-num)[op=='-'],
  'mul' : calc_binary,
  'add' : calc_binary,
}
 
def match(rule_name, tokens):
  if tokens and rule_name == tokens[0].name:   # Match a token?
    return tokens[0], tokens[1:]
  for expansion in rule_map.get(rule_name, ()):  # Match a rule?
    remaining_tokens = tokens
    matched_subrules = []
    for subrule in expansion.split():
      matched, remaining_tokens = match(subrule, remaining_tokens)
      if not matched:
        break  # no such luck. next expansion!
      matched_subrules.append(matched)
    else:
      return RuleMatch(rule_name, matched_subrules), remaining_tokens
  return None, None  # match not found
 
def _recurse_tree(tree, func):
  return map(func, tree.matched) if tree.name in rule_map else tree[1]
 
def flatten_right_associativity(tree):
  new = _recurse_tree(tree, flatten_right_associativity)
  if tree.name in fix_assoc_rules and len(new)==3 and new[2].name==tree.name:
    new[-1:] = new[-1].matched
  return RuleMatch(tree.name, new)
 
def evaluate(tree):
  solutions = _recurse_tree(tree, evaluate)
  return calc_map.get(tree.name, lambda x:x)(solutions)
 
def calc(expr):
  split_expr = re.findall('[\d.]+|[%s]' % ''.join(token_map), expr)
  tokens = [Token(token_map.get(x, 'NUM'), x) for x in split_expr]
  tree = match('add', tokens)[0]
  tree = flatten_right_associativity( tree )
  return evaluate(tree)
 
if __name__ == '__main__':
  while True:
    print( calc(raw_input('> ')) )
登入後複製

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vscode怎麼在終端運行程序 vscode怎麼在終端運行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通過以下步驟在終端運行程序:準備代碼和打開集成終端確保代碼目錄與終端工作目錄一致根據編程語言選擇運行命令(如 Python 的 python your_file_name.py)檢查是否成功運行並解決錯誤利用調試器提升調試效率

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles