为什么numpy的array那么快?
在python numpy中,如果我用10^6长度随机生成的list生成numpy array,那么生成耗时0.1s, 但是得到这个array的mean只需要init的2%的时间。 而我自己implement的array得到mean需要十几秒。
所以numpy的array十分黑科技是应为:
1)用底层代码太厉害?
2)init的时候partially compute了某一些中间量?(应为求mean的时间比access慢,比O(n)快 )
如果是2的话能否讲一下大概思路(不需要用python O(n)就能得mean)?
感激不禁!
回复内容:
numpy的许多函数不仅是用C实现了,还使用了BLAS(一般Windows下link到MKL的,Linux下link到OpenBLAS)。基本上那些BLAS实现在每种操作上都进行了高度优化,例如使用AVX向量指令集,甚至能比你自己用C实现快上许多,更不要说和用Python实现的比。。 你用blas试试 numpy底层使用BLAS做向量,矩阵运算。像求平均值这种vector operation,很容易使用multi-threading或者vectorization来加速。比如MKL就有很多优化。<span class="n">a</span><span class="o">=</span><span class="p">[];</span><span class="n">s</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="n">n</span><span class="o">=</span><span class="mi">1000000</span> <span class="kn">from</span> <span class="nn">time</span> <span class="kn">import</span><span class="o">*</span> <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span><span class="o">*</span> <span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span><span class="o">*</span> <span class="n">st</span><span class="o">=</span><span class="n">clock</span><span class="p">()</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="n">a</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">random</span><span class="p">())</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">a</span><span class="p">:</span><span class="n">s</span><span class="o">=</span><span class="n">s</span><span class="o">+</span><span class="n">i</span> <span class="n">et</span><span class="o">=</span><span class="n">clock</span><span class="p">()</span> <span class="k">print</span> <span class="s">"mean="</span><span class="p">,</span><span class="n">s</span><span class="o">/</span><span class="n">n</span><span class="p">,</span><span class="s">"time="</span><span class="p">,</span><span class="n">et</span><span class="o">-</span><span class="n">st</span><span class="p">,</span><span class="s">"seconds"</span>

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
