为含有分区及子分区的模型添加分区。
无详细内容 无 create or replace procedure p_test_gy(v_datacycle_id varchar2, --添加分区的上限值 v_entity_owner varchar2, v_entity_name varchar2, v_retcode out varchar2, v_retinfo out varchar2) is v_cnt1 number; --实体检测 v_cnt2 number; --
<无详细内容> <无>create or replace procedure p_test_gy(v_datacycle_id varchar2, --添加分区的上限值 v_entity_owner varchar2, v_entity_name varchar2, v_retcode out varchar2, v_retinfo out varchar2) is v_cnt1 number; --实体检测 v_cnt2 number; --分区是否存在检测 v_cnt3 number; --模板子分区是否存在检测 v_part_type varchar2(30); --分区类型 v_subpart_type varchar2(30); --子分区类型 v_part_value_max varchar2(30); --分区最大值 v_part_style varchar2(30); --分区命名格式 v_part_value varchar2(30); --分区值变量 v_sql varchar2(4000); --动态执行SQL v_sub_template varchar2(4000); --调整模板子分区 v_high_value long; --子分区值变量 v_subpart_value varchar2(30); --子分区值变量 /*v_pkg v_procname */ begin /*--插入日志部分 p_insert_log(v_acct_month, v_pkg, v_procname, v_prov_id, sysdate, '');*/ --检测输入参数是否有误 select count(0) into v_cnt1 from sys.dba_objects where owner = v_entity_owner and object_name = v_entity_name and object_type = 'TABLE'; if v_cnt1 = 0 then v_retcode := 'FAIL'; v_retinfo := '目标表信息输入有误'; else --检测目标表有无分区 select count(0) into v_cnt2 from sys.dba_part_tables t where t.owner = v_entity_owner and t.table_name = v_entity_name; if v_cnt2 = 0 then v_retcode := 'SUCCESS'; v_retinfo := '目标表无分区'; else --检测分区是否已存在 select regexp_replace(max(t.partition_name), '[^0-9]', ''), regexp_replace(max(t.partition_name), '[0-9]', '') into v_part_value_max, v_part_style from sys.dba_tab_partitions t where t.table_owner = v_entity_owner and t.table_name = v_entity_name; select partitioning_type, subpartitioning_type into v_part_type, v_subpart_type from sys.dba_part_tables t where t.owner = v_entity_owner and t.table_name = v_entity_name; --分区已存在&分区是LIST/HASH分区 if v_part_value_max >= v_datacycle_id OR v_part_type <> 'RANGE' then v_retcode := 'SUCCESS'; v_retinfo := '分区已存在'; else select count(0) into v_cnt3 from sys.dba_subpartition_templates where table_name = v_entity_name and user_name = v_entity_owner; --无子分区&有子分区且为模板子分区 if v_part_type = 'RANGE' AND ((v_subpart_type = 'LIST' AND v_cnt3 <> 0) OR nvl(v_subpart_type, '**') = 'NONE') then v_part_value := to_char(add_months(to_date(v_part_value_max, 'yyyymm'), 1), 'yyyymm'); while v_part_value <= v_datacycle_id loop v_sql := 'alter table ' || v_entity_owner || '.' || v_entity_name || ' add partition ' || v_part_style || v_part_value || ' values less than (''' || to_char(add_months(to_date(v_part_value, 'yyyymm'), 1), 'yyyymm') || ''') tablespace '; --日志检索 /*dbms_output.put_line(v_sql);*/ --需要分配分区(或者建表设置默认表空间) execute immediate v_sql; v_part_value := to_char(add_months(to_date(v_part_value, 'yyyymm'), 1), 'yyyymm'); end loop; v_retcode := 'SUCCESS'; v_retinfo := '成功'; else /*--顺序不太好看 select rtrim(wmsys.wm_concat(' subpartition ' || substr(subpartition_name,length(partition_name)+2) || ' values ( ''' || regexp_replace(substr(subpartition_name, length(partition_name)+2),'[^0-9]','') || ''' ) '),',') into v_sub_template from sys.dba_tab_subpartitions where table_owner = v_entity_owner and partition_name = v_part_value_max and table_name = v_entity_name;*/ --有子分区且非模板子分区 v_sub_template := 'alter table ' || v_entity_owner || '.' || v_entity_name || ' set subpartition template('; --''' ||regexp_replace(substr(subpartition_name,length(partition_name) + 2),'[^0-9]','') || ''' for t in (select /*+parallel(sub,4)*/* from sys.dba_tab_subpartitions sub where table_owner = v_entity_owner and partition_name = v_part_style || v_part_value_max and table_name = v_entity_name order by length(regexp_replace(subpartition_name, '[0-9]', '')),subpartition_name) loop v_high_value:=t.high_value; v_subpart_value:=substr(v_high_value,1,4000); /*if v_subpart_value= 'DEFAULT' then v_subpart_value:='''DEFAULT'''; end if;*/ v_sub_template := v_sub_template ||' subpartition ' || substr(t.subpartition_name, length(t.partition_name) + 2) || ' values ( '||v_subpart_value||' ) ,' ; end loop; --日志检索 dbms_output.put_line(rtrim(v_sub_template, ',') || ')'); insert into dm_check_log select rtrim(v_sub_template, ',') || ')', v_datacycle_id, sysdate from dual; commit; execute immediate rtrim(v_sub_template, ',') || ')'; v_part_value := to_char(add_months(to_date(v_part_value_max, 'yyyymm'), 1), 'yyyymm'); while v_part_value <= v_datacycle_id loop v_sql := 'alter table ' || v_entity_owner || '.' || v_entity_name || ' add partition ' || v_part_style || v_part_value || ' values less than (''' || to_char(add_months(to_date(v_part_value, 'yyyymm'), 1), 'yyyymm') || ''') tablespace '; /*dbms_output.put_line(v_sql);*/ execute immediate v_sql; --需要分配分区(或者建表设置默认表空间) v_part_value := to_char(add_months(to_date(v_part_value, 'yyyymm'), 1), 'yyyymm'); end loop; v_retcode := 'SUCCESS'; v_retinfo := '成功'; end if; end if; end if; end if; end;

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

很多用户们在现代生活中越来越青睐小米智能家居互联的电子生态,那么连接米家APP后,你就可以轻松用手机来控制连接设备,但是很多用户们还不知如何将自己的家居添加米家app中,那么这篇教程攻略就将为大家带来具体连接方法步骤攻略,希望能帮助到各位有需要的小伙伴们。1、下载米家APP后,创建或者登录小米账户。2、添加方法:当全新的设备通电后,将手机靠近设备并打开小米电视,正常情况下会弹出连接提示,选择“确定”即进入设备连接流程。若无提示弹出,也可以手动添加设备,方法是:进入智能家庭APP后,点击左下方第1

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
