mongodb入门-8查询3
mongodb入门-8查询3 继续学下mongodb的查询 $or $nor $or或者的意思 只要有一个符合就查出了. $nor与$or相反,只要是$or能够查出来的$nor作为去除的部分. [html] db.user.find() { _id : ObjectId(5198c286c686eb50e2c843b2), name : user0, age : 0 } { _id
mongodb入门-8查询3
继续学下mongodb的查询
$or $nor
$or或者的意思 只要有一个符合就查出了. $nor与$or相反,只要是$or能够查出来的$nor作为去除的部分.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
> db.user.find({$or:[{name:"user1"},{age:20}]}) -->这里可以看到$or和其它的$开头方法不同,其它一般都是作为一个键的值,这个是之间作为键的,可能这里解释的不是很清楚,大家理解了就好
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
同样$nor就是查询出其它的部分:
[html]
> db.user.find({$nor:[{name:"user1"},{age:20}]})
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
$size 查询数组的长度等于给定数组长度的文档
[html]
> db.phone.find()
{ "_id" : ObjectId("5198e20220c9b0dc40419385"), "num" : [ 1, 2, 3 ] }
{ "_id" : ObjectId("5198e21820c9b0dc40419386"), "num" : [ 4, 2, 3 ] }
{ "_id" : ObjectId("5198e22120c9b0dc40419387"), "num" : [ 1, 2, 5 ] }
{ "_id" : ObjectId("5198e51a20c9b0dc40419388"), "state" : 1 }
{ "_id" : ObjectId("519969952b76790566165de2"), "num" : [ 2, 3 ] }
> db.phone.find({num:{$size:4}}) -->num数组长度为4的结果没有
> db.phone.find({num:{$size:3}}) -->长度为3的有三个
{ "_id" : ObjectId("5198e20220c9b0dc40419385"), "num" : [ 1, 2, 3 ] }
{ "_id" : ObjectId("5198e21820c9b0dc40419386"), "num" : [ 4, 2, 3 ] }
{ "_id" : ObjectId("5198e22120c9b0dc40419387"), "num" : [ 1, 2, 5 ] }
$where 自定义的查询
$where的值是一个function,我们可以自己写这个function然后去判断哪些值是我们需要的.它会循环扫描集合中的文档,然后执行函数中的判断,只要我们返回true,此文档就会被查出.但是有一点这个方法的性能不是很好,比如下面的查询我能明显感到一些停顿(与上面讲过的方法比较),有兴趣的考研自己试一下.建议只有在其他$方法不能满足查询的时候,在使用$where查询.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
> db.user.find({$where:function(){return this.age == 3 || this.age == 4}})
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
$type 根据数据类型查询
在mongodb中每一种数据类型都有对应的数字,我们在使用$type的时候需要使用这些数字,文档中给出如下的表示
类型 编号
双精度 1
字符串 2
对象 3
数组 4
二进制数据 5
对象 ID 7
布尔值 8
日期 9
空 10
正则表达式 11
JavaScript 13
符号 14
JavaScript(带范围) 15
32 位整数 16
时间戳 17
64 位整数 18
最小键 255
最大键 127 一段例子代码:
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
{ "_id" : ObjectId("51996ef22b76790566165e47"), "name" : 23, "age" : 33 }
> db.user.find({name:{$type:1}}) -->查找name为双精度的文档
{ "_id" : ObjectId("51996ef22b76790566165e47"), "name" : 23, "age" : 33 }
在命令行中type的一些值是不起作用的,这可能与命令行环境有关系,如果谁清楚这个,还请给我留言.
正则表达式
mongodb中查询也支持正则,跟javascript中的正则基本一样,但是不建议使用,因为性能不算是很好.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
{ "_id" : ObjectId("51996ef22b76790566165e47"), "name" : 23, "age" : 33 }
> db.user.find({name:/user*/i}) -->查询name以user开头不区分大小写的文档
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
排序
在mongodb中排序很简单,使用sort方法,传递给它你想按照哪个字段的哪种方式排序即可.这里1代表升序,-1代表降序.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
> db.user.find().sort({age:1})
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
> db.user.find().sort({age:-1})
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
group 分组查询
mongodb中的group可以实现类似关系型数据库中的分组的功能,但是mongodb中的group远比关系型数据库中的group强大,可以实现map-reduce功能,至于map-reduce读者自己百度吧,现在比较火.
group中的json参数类似这样{key:{字段:1},initial:{变量:初始值},$reduce:function(doc,prev){函数代码}}.
其中的字段代表,需要按哪个字段分组.变量表示这一个分组中会使用的变量,并且给一个初始值.可以在后面的$reduce函数中使用.$reduce的两个参数,分别代表当前的文档和上个文档执行完函数后的结果.如下我们按年龄分组,同级不同年龄的用户的多少:
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 2 }
> db.user.group({key:{age:1},initial:{count:0},$reduce:function(doc,prev){prev.count++}})
[
{
"age" : 0,
"count" : 1
},
{
"age" : 1,
"count" : 3
},
{
"age" : 2,
"count" : 2
}
]
group更加详细的介绍请看http://www.2cto.com/database/201305/212159.html这篇文章
distinct
去除查询结果中的重复数据,对原有数据不会产生影响,返回的结果是一个数组.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 2 }
> db.user.distinct("age")
[ 0, 1, 2 ]
分页查询
在mongodb中实现分页比较简单,需要使用到skip 和limit方法.skip表示跳过前面的几个文档,limit表示显示几个文档.
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 2 }
> db.user.find().skip(2).limit(3) -->跳过前两个文档查询后面的三个文档,经过测试这两个方法的使用顺序没有影响
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 1 }
> db.user.find().limit(3).skip(2)
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 1 }

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Kimi:一句话,十几秒钟,一份PPT就新鲜出炉了。PPT这玩意儿,可太招人烦了!开个碰头会,要有PPT;写个周报,要做PPT;拉个投资,要展示PPT;就连控诉出轨,都得发个PPT。大学更像是学了个PPT专业,上课看PPT,下课做PPT。或许,37年前丹尼斯・奥斯汀发明PPT时也没想到,有一天PPT竟如此泛滥成灾。吗喽们做PPT的苦逼经历,说起来都是泪。「一份二十多页的PPT花了三个月,改了几十遍,看到PPT都想吐」;「最巅峰的时候,一天做了五个PPT,连呼吸都是PPT」;「临时开个会,都要做个

北京时间6月20日凌晨,在西雅图举办的国际计算机视觉顶会CVPR2024正式公布了最佳论文等奖项。今年共有10篇论文获奖,其中2篇最佳论文,2篇最佳学生论文,另外还有2篇最佳论文提名和4篇最佳学生论文提名。计算机视觉(CV)领域的顶级会议是CVPR,每年都会吸引大量研究机构和高校参会。据统计,今年共提交了11532份论文,2719篇被接收,录用率为23.6%。根据佐治亚理工学院对CVPR2024的数据统计分析,从研究主题来看,论文数量最多的是图像和视频合成与生成(Imageandvideosyn

我们知道LLM是在大规模计算机集群上使用海量数据训练得到的,本站曾介绍过不少用于辅助和改进LLM训练流程的方法和技术。而今天,我们要分享的是一篇深入技术底层的文章,介绍如何将一堆连操作系统也没有的「裸机」变成用于训练LLM的计算机集群。这篇文章来自于AI初创公司Imbue,该公司致力于通过理解机器的思维方式来实现通用智能。当然,将一堆连操作系统也没有的「裸机」变成用于训练LLM的计算机集群并不是一个轻松的过程,充满了探索和试错,但Imbue最终成功训练了一个700亿参数的LLM,并在此过程中积累

机器之能报道编辑:杨文以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人工智能使用案例,来具体介绍AI使用方法,并激发大家思考。我们也欢迎读者投稿亲自实践的创新型用例。视频链接:https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ最近,独居女孩的生活Vlog在小红书上走红。一个插画风格的动画,再配上几句治愈系文案,短短几天就能轻松狂揽上

检索增强式生成(RAG)是一种使用检索提升语言模型的技术。具体来说,就是在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程。这种技术能极大提升内容的准确性和相关性,并能有效缓解幻觉问题,提高知识更新的速度,并增强内容生成的可追溯性。RAG无疑是最激动人心的人工智能研究领域之一。有关RAG的更多详情请参阅本站专栏文章《专补大模型短板的RAG有哪些新进展?这篇综述讲明白了》。但RAG也并非完美,用户在使用时也常会遭遇一些「痛点」。近日,英伟达生成式AI高级解决

当Sora「千呼万唤」不出来时,OpenAI的对手们却纷纷祭出大杀器来炸街。Sora再不开放使用,真的要被偷家了!今日,旧金山初创公司LumaAI打出一手王牌,推出新一代AI视频生成模型DreamMachine。人人免费可用。据介绍,该模型能够根据简单的文本描述生成高质量、逼真视频,效果堪比Sora。消息一出,大量用户挤进官网尝鲜。尽管官方声称该模型能在短短两分钟内生成120帧视频,但由于访问量激增,许多用户在官网中苦苦等待数小时。Luma的产品增长主管BarkleyDai不得不在Discord

7月24日,快手视频生成大模型可灵AI宣布基础模型再次升级,并全面开放内测。快手表示,为了让更多用户能使用可灵AI,更好满足创作者不同层次的使用需求,即日起,在全面开放内测的基础上,还将正式上线会员体系,针对不同类别的会员,提供相应的专属功能服务。同时,可灵AI的基础模型也再次迎来升级,进一步提升用户体验。基础模型效果再升级进一步提升用户体验发布一个多月以来,可灵AI已经多次升级迭代,随着本次会员体系的推出,可灵AI的基础模型效果再次迎来蜕变。首先是画面质量显着提升,通过升级后的基础模型生成的视

矩阵很难理解,但换个视角或许会不一样。在学习数学时,我们常因所学知识的难度和抽象而受挫;但有些时候,只需换个角度,我们就能为问题的解答找到一个简单又直观的解法。举个例子,小时候在学习和的平方(a+b)²公式时,我们可能并不理解为什么它等于a²+2ab+b²,只知道书上这么写,老师让这么记;直到某天我们看见了这张动图:登时恍然大悟,原来我们可以从几何角度来理解它!现在,这种恍然大悟之感又出现了:非负矩阵可以等价地转换成对应的有向图!如下图所示,左侧的3×3矩阵其实可
