首页 数据库 mysql教程 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

Jun 07, 2016 pm 03:27 PM
mapreduce 程序 简单 编写 部署

经过几天的折腾,终于配置好了 Hadoop 2.2.0(如何配置在Linux平台部署 Hadoop 请参见本博客《在Fedora上部署Hadoop2.2.0伪分布式平台》),今天主要来说说怎么在Hadoop2.2.0伪分布式上面运行我们写好的 Mapreduce 程序。先给出这个程序所依赖的Maven包: 01 0

        经过几天的折腾,终于配置好了Hadoop2.2.0(如何配置在Linux平台部署Hadoop请参见本博客《在Fedora上部署Hadoop2.2.0伪分布式平台》),今天主要来说说怎么在Hadoop2.2.0伪分布式上面运行我们写好的Mapreduce程序。先给出这个程序所依赖的Maven包:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

<dependencies></dependencies>

    <dependency></dependency>

        <groupid>org.apache.hadoop</groupid>

        <artifactid>hadoop-mapreduce-client-core</artifactid>

        <version></version>2.1.1-beta

    

    <dependency></dependency>

        <groupid>org.apache.hadoop</groupid>

        <artifactid>hadoop-common</artifactid>

        <version></version>2.1.1-beta

    

    <dependency></dependency>

        <groupid>org.apache.hadoop</groupid>

        <artifactid>hadoop-mapreduce-client-common</artifactid>

        <version></version>2.1.1-beta

    

    <dependency></dependency>

        <groupid>org.apache.hadoop</groupid>

        <artifactid>hadoop-mapreduce-client-jobclient</artifactid>

        <version></version>2.1.1-beta

    

好了,现在给出程序,代码如下:

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

package com.wyp.hadoop;

 

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.*;

 

import java.io.IOException;

 

/**

 * User: wyp

 * Date: 13-10-25

 * Time: 下午3:26

 * Email:wyphao.2007@163.com

 */

public class MaxTemperatureMapper extends MapReduceBase

                      implements Mapper<longwritable text></longwritable>

                      Text,IntWritable>{

    private static final int MISSING = 9999;

 

    @Override

    public void map(LongWritable key, Text value,

                      OutputCollector<text intwritable> output, </text>

                      Reporter reporter) throws IOException {

 

        String line = value.toString();

        String year = line.substring(15, 19);

        int airTemperature;

        if(line.charAt(87) == '+'){

            airTemperature = Integer.parseInt(line.substring(88, 92));

        }else{

            airTemperature = Integer.parseInt(line.substring(87, 92));

        }

 

        String quality = line.substring(92, 93);

        if(airTemperature != MISSING && quality.matches("[01459]")){

            output.collect(new Text(year), new IntWritable(airTemperature));

        }

    }

}

 

package com.wyp.hadoop;

 

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

 

import java.io.IOException;

import java.util.Iterator;

 

/**

 * User: wyp

 * Date: 13-10-25

 * Time: 下午3:36

 * Email:wyphao.2007@163.com

 */

public class MaxTemperatureReducer extends MapReduceBase

                    implements Reducer<text intwritable></text>

                    Text, IntWritable> {

    @Override

    public void reduce(Text key, Iterator<intwritable> values, </intwritable>

                    OutputCollector<text intwritable> output, </text>

                    Reporter reporter) throws IOException {

        int maxValue = Integer.MIN_VALUE;

        while (values.hasNext()){

            maxValue = Math.max(maxValue, values.next().get());

        }

 

        output.collect(key, new IntWritable(maxValue));

    }

}

 

package com.wyp.hadoop;

 

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

 

import java.io.IOException;

 

/**

 * User: wyp

 * Date: 13-10-25

 * Time: 下午3:40

 * Email:wyphao.2007@163.com

 */

public class MaxTemperature {

 

    public static void main(String[] args) throws IOException {

        if(args.length != 2){

            System.err.println("Error!");

            System.exit(1);

        }

 

        JobConf conf = new JobConf(MaxTemperature.class);

        conf.setJobName("Max Temperature");

 

        FileInputFormat.addInputPath(conf, new Path(args[0]));

        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        conf.setMapperClass(MaxTemperatureMapper.class);

        conf.setReducerClass(MaxTemperatureReducer.class);

        conf.setOutputKeyClass(Text.class);

        conf.setOutputValueClass(IntWritable.class);

 

        JobClient.runJob(conf);

 

    }

}

  将上面的程序编译和打包成jar文件,然后开始在Hadoop2.2.0(本文假定用户都部署好了Hadoop2.2.0)上面部署了。下面主要讲讲如何去部署:
  首先,启动Hadoop2.2.0,命令如下:

1

2

[wyp@wyp hadoop]$ sbin/start-dfs.sh

[wyp@wyp hadoop]$ sbin/start-yarn.sh

  如果你想看看Hadoop2.2.0是否运行成功,运行下面的命令去查看

1

2

3

4

5

6

7

8

9

[wyp@wyp hadoop]$ jps

9582 Main

9684 RemoteMavenServer

16082 Jps

7011 DataNode

7412 ResourceManager

7528 NodeManager

7222 SecondaryNameNode

6832 NameNode

  其中jps是jdk自带的一个命令,在jdk/bin目录下。如果你电脑上面出现了以上的几个进程(NameNode、SecondaryNameNode、NodeManager、ResourceManager、DataNode这五个进程必须出现!)说明你的Hadoop服务器启动成功了!现在来运行上面打包好的jar文件(这里为Hadoop.jar,其中/home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/Hadoop.jar是它的绝对路径,不知道绝对路径是什么?那你好好去学学吧!),运行下面的命令:

1

2

3

4

5

[wyp@wyp Hadoop_jar]$ /home/wyp/Downloads/hadoop/bin/hadoop jar \

           /home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/Hadoop.jar  \

           com/wyp/hadoop/MaxTemperature \

           /user/wyp/data.txt \

           /user/wyp/result

  (上面是一条命令,由于太长了,所以我分行写,在实际情况中,请写一行!)其中,/home/wyp/Downloads/hadoop/bin/hadoop是hadoop的绝对路径,如果你在环境变量中配置好hadoop命令的路径就不需要这样写;com/wyp/hadoop/MaxTemperature是上面程序的main函数的入口;/user/wyp/data.txt是Hadoop文件系统(HDFS)中的绝对路径(注意:这里不是你Linux系统中的绝对路径!),为需要分析文件的路径(也就是input);/user/wyp/result是分析结果输出的绝对路径(注意:这里不是你Linux系统中的绝对路径!而是HDFS上面的路径!而且/user/wyp/result一定不能存在,否则会抛出异常!这是Hadoop的保护机制,你总不想你以前运行好几天的程序突然被你不小心给覆盖掉了吧?所以,如果/user/wyp/result存在,程序会抛出异常,很不错啊)。好了。输入上面的命令,应该会得到下面类似的输出:

13/10/28 15:20:44 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
13/10/28 15:20:44 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
13/10/28 15:20:45 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
13/10/28 15:20:45 WARN mapreduce.JobSubmitter: No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
13/10/28 15:20:45 INFO mapred.FileInputFormat: Total input paths to process : 1
13/10/28 15:20:46 INFO mapreduce.JobSubmitter: number of splits:2
13/10/28 15:20:46 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/10/28 15:20:46 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/10/28 15:20:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1382942307976_0008
13/10/28 15:20:47 INFO mapred.YARNRunner: Job jar is not present. Not adding any jar to the list of resources.
13/10/28 15:20:49 INFO impl.YarnClientImpl: Submitted application application_1382942307976_0008 to ResourceManager at /0.0.0.0:8032
13/10/28 15:20:49 INFO mapreduce.Job: The url to track the job: http://wyp:8088/proxy/application_1382942307976_0008/
13/10/28 15:20:49 INFO mapreduce.Job: Running job: job_1382942307976_0008
13/10/28 15:20:59 INFO mapreduce.Job: Job job_1382942307976_0008 running in uber mode : false
13/10/28 15:20:59 INFO mapreduce.Job:  map 0% reduce 0%
13/10/28 15:21:35 INFO mapreduce.Job:  map 100% reduce 0%
13/10/28 15:21:38 INFO mapreduce.Job:  map 0% reduce 0%
13/10/28 15:21:38 INFO mapreduce.Job: Task Id : attempt_1382942307976_0008_m_000000_0, Status : FAILED
Error: java.lang.RuntimeException: Error in configuring object
    at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109)
    at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75)
    at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133)
    at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:425)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157)
Caused by: java.lang.reflect.InvocationTargetException
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)
    ... 9 more
Caused by: java.lang.RuntimeException: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1752)
    at org.apache.hadoop.mapred.JobConf.getMapperClass(JobConf.java:1058)
    at org.apache.hadoop.mapred.MapRunner.configure(MapRunner.java:38)
    ... 14 more
Caused by: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1720)
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1744)
    ... 16 more
Caused by: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found
    at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1626)
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1718)
    ... 17 more
 
Container killed by the ApplicationMaster.
Container killed on request. Exit code is 143
登录后复制

程序居然抛出异常(ClassNotFoundException)!这是什么回事?其实我也不太明白!!

  在网上Google了一下,找到别人的观点:
  经个人总结,这通常是由于以下几种原因造成的:
(1)你编写了一个java lib,封装成了jar,然后再写了一个Hadoop程序,调用这个jar完成mapper和reducer的编写
(2)你编写了一个Hadoop程序,期间调用了一个第三方java lib。
之后,你将自己的jar包或者第三方java包分发到各个TaskTracker的HADOOP_HOME目录下,运行你的JAVA程序,报了以上错误。

  那怎么解决呢?一个笨重的方法是,在运行Hadoop作业的时候,先运行下面的命令:

1

2

[wyp@wyp Hadoop_jar]$ export \

    HADOOP_CLASSPATH=/home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/

  其中,/home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/是上面Hadoop.jar文件所在的目录。好了,现在再运行一下Hadoop作业命令:

[wyp@wyp Hadoop_jar]$ hadoop jar /home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/Hadoop.jar  com/wyp/hadoop/MaxTemperature /user/wyp/data.txt /user/wyp/result
13/10/28 15:34:16 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
13/10/28 15:34:16 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
13/10/28 15:34:17 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
13/10/28 15:34:17 INFO mapred.FileInputFormat: Total input paths to process : 1
13/10/28 15:34:17 INFO mapreduce.JobSubmitter: number of splits:2
13/10/28 15:34:17 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/10/28 15:34:17 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/10/28 15:34:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1382942307976_0009
13/10/28 15:34:18 INFO impl.YarnClientImpl: Submitted application application_1382942307976_0009 to ResourceManager at /0.0.0.0:8032
13/10/28 15:34:18 INFO mapreduce.Job: The url to track the job: http://wyp:8088/proxy/application_1382942307976_0009/
13/10/28 15:34:18 INFO mapreduce.Job: Running job: job_1382942307976_0009
13/10/28 15:34:26 INFO mapreduce.Job: Job job_1382942307976_0009 running in uber mode : false
13/10/28 15:34:26 INFO mapreduce.Job:  map 0% reduce 0%
13/10/28 15:34:41 INFO mapreduce.Job:  map 50% reduce 0%
13/10/28 15:34:53 INFO mapreduce.Job:  map 100% reduce 0%
13/10/28 15:35:17 INFO mapreduce.Job:  map 100% reduce 100%
13/10/28 15:35:18 INFO mapreduce.Job: Job job_1382942307976_0009 completed successfully
13/10/28 15:35:18 INFO mapreduce.Job: Counters: 43
    File System Counters
        FILE: Number of bytes read=144425
        FILE: Number of bytes written=524725
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=1777598
        HDFS: Number of bytes written=18
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=38057
        Total time spent by all reduces in occupied slots (ms)=24800
    Map-Reduce Framework
        Map input records=13130
        Map output records=13129
        Map output bytes=118161
        Map output materialized bytes=144431
        Input split bytes=182
        Combine input records=0
        Combine output records=0
        Reduce input groups=2
        Reduce shuffle bytes=144431
        Reduce input records=13129
        Reduce output records=2
        Spilled Records=26258
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=321
        CPU time spent (ms)=5110
        Physical memory (bytes) snapshot=552824832
        Virtual memory (bytes) snapshot=1228738560
        Total committed heap usage (bytes)=459800576
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=1777416
    File Output Format Counters 
        Bytes Written=18
登录后复制

到这里,程序就成功运行了!很高兴吧?那么怎么查看刚刚程序运行的结果呢?很简单,运行下面命令:

01

02

03

04

05

06

07

08

09

10

11

[wyp@wyp Hadoop_jar]$ hadoop fs -ls /user/wyp

Found 2 items

-rw-r--r--   1 wyp supergroup    1777168 2013-10-25 17:44 /user/wyp/data.txt

drwxr-xr-x   - wyp supergroup          0 2013-10-28 15:35 /user/wyp/result

[wyp@wyp Hadoop_jar]$ hadoop fs -ls /user/wyp/result

Found 2 items

-rw-r--r--   1 wyp supergroup    0 2013-10-28 15:35 /user/wyp/result/_SUCCESS

-rw-r--r--   1 wyp supergroup  18 2013-10-28 15:35 /user/wyp/result/part-00000

[wyp@wyp Hadoop_jar]$ hadoop fs -cat  /user/wyp/result/part-00000

1901    317

1902    244

  到此,你自己写好的一个Mapreduce程序终于成功运行了!
  附程序测试的数据的下载地址:http://pan.baidu.com/s/1iSacM

过往记忆(http://www.iteblog.com/)
编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行(http://www.iteblog.com/archives/789)

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何在iPhone中使Google地图成为默认地图 如何在iPhone中使Google地图成为默认地图 Apr 17, 2024 pm 07:34 PM

iPhone上的默认地图是Apple专有的地理位置提供商“地图”。尽管地图越来越好,但它在美国以外的地区运行不佳。与谷歌地图相比,它没有什么可提供的。在本文中,我们讨论了使用Google地图成为iPhone上的默认地图的可行性步骤。如何在iPhone中使Google地图成为默认地图将Google地图设置为手机上的默认地图应用程序比您想象的要容易。请按照以下步骤操作–先决条件步骤–您必须在手机上安装Gmail。步骤1–打开AppStore。步骤2–搜索“Gmail”。步骤3–点击Gmail应用旁

最简便的硬盘序列号查询方式 最简便的硬盘序列号查询方式 Feb 26, 2024 pm 02:24 PM

硬盘序列号是硬盘的一个重要标识,通常用于唯一标识硬盘以及进行硬件识别。在某些情况下,我们可能需要查询硬盘序列号,比如在安装操作系统、查找正确设备驱动程序或进行硬盘维修等情况下。本文将介绍一些简单的方法,帮助大家查询硬盘序列号。方法一:使用Windows命令提示符打开命令提示符。在Windows系统中,按下Win+R键,输入"cmd"并按下回车键即可打开命

iPhone中缺少时钟应用程序:如何修复 iPhone中缺少时钟应用程序:如何修复 May 03, 2024 pm 09:19 PM

您的手机中缺少时钟应用程序吗?日期和时间仍将显示在iPhone的状态栏上。但是,如果没有时钟应用程序,您将无法使用世界时钟、秒表、闹钟等多项功能。因此,修复时钟应用程序的缺失应该是您的待办事项列表的首位。这些解决方案可以帮助您解决此问题。修复1–放置时钟应用程序如果您错误地从主屏幕中删除了时钟应用程序,您可以将时钟应用程序放回原位。步骤1–解锁iPhone并开始向左侧滑动,直到到达“应用程序库”页面。步骤2–接下来,在搜索框中搜索“时钟”。步骤3–当您在搜索结果中看到下方的“时钟”时,请按住它并

无法允许访问 iPhone 中的摄像头和麦克风 无法允许访问 iPhone 中的摄像头和麦克风 Apr 23, 2024 am 11:13 AM

您在尝试使用应用程序时是否收到“无法允许访问摄像头和麦克风”?通常,您可以在需要提供的基础上向特定对象授予摄像头和麦克风权限。但是,如果您拒绝权限,摄像头和麦克风将无法工作,而是显示此错误消息。解决这个问题是非常基本的,你可以在一两分钟内完成。修复1–提供相机、麦克风权限您可以直接在设置中提供必要的摄像头和麦克风权限。步骤1–转到“设置”选项卡。步骤2–打开“隐私与安全”面板。步骤3–在那里打开“相机”权限。步骤4–在里面,您将找到已请求手机相机权限的应用程序列表。步骤5–打开指定应用的“相机”

编写C语言中计算幂函数的方法 编写C语言中计算幂函数的方法 Feb 19, 2024 pm 01:00 PM

如何在C语言中编写乘方函数乘方(exponentiation)是数学中常用的运算,表示将一个数自乘若干次的操作。在C语言中,我们可以通过编写一个乘方函数来实现这个功能。下面将详细介绍如何在C语言中编写乘方函数,并给出具体的代码示例。确定函数的输入和输出乘方函数的输入通常包含两个参数:底数(base)和指数(exponent),输出为计算得到的结果。因此,我们

解决Tomcat部署war包后无法访问的问题的方法 解决Tomcat部署war包后无法访问的问题的方法 Jan 13, 2024 pm 12:07 PM

如何解决Tomcat部署war包后无法成功访问的困扰,需要具体代码示例Tomcat作为一个广泛使用的JavaWeb服务器,允许开发人员将自己开发的Web应用打包为war文件进行部署。然而,有时候我们可能会遇到部署war包后无法成功访问的问题,这可能是由于配置不正确或其他原因引起的。在本文中,我们将提供一些解决这个困扰的具体代码示例。一、检查Tomcat服务

Yolov10:详解、部署、应用一站式齐全! Yolov10:详解、部署、应用一站式齐全! Jun 07, 2024 pm 12:05 PM

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显着进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显着的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

Flask应用的Gunicorn部署指南 Flask应用的Gunicorn部署指南 Jan 17, 2024 am 08:13 AM

如何使用Gunicorn部署Flask应用?Flask是一个轻量级的PythonWeb框架,被广泛应用于开发各种类型的Web应用。而Gunicorn(GreenUnicorn)是一个基于Python的HTTP服务器,用于运行WSGI(WebServerGatewayInterface)应用。本文将介绍如何使用Gunicorn部署Flask应用,并附

See all articles