首页 数据库 mysql教程 大数据量的处理

大数据量的处理

Jun 07, 2016 pm 03:29 PM
具体 处理 数据 监测 问题

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。 这个问题研究了好几天: 一、文件写入存储:但

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。

这个问题研究了好几天:

一、文件写入存储:但是如果将一天的17亿条记录都写入到一个文件里,没试过,相信会很慢,而且查询的时候会更慢。如果写入到多个文件,按照流ID可以将数据拆成20000个分类,同时对20000个文件执行写入操作也不现实。

二、数据库存储:文件存储的方式pass掉了之后开始考虑数据库存储

1、首先我用的Oracle进行性能测试:

将表按照流ID进列表分区,分为20000个区,然后每个分区内存储86400条数据(也就是该流从一天的第1秒到86400秒对应的指标数据),需要有索引,主键是全局索引,其余的列我又建了4个分区索引。

第一步创建6个表空间,保证每个表空间都能拓展到32GB大小(Oracle的表空间最大能拓展到32GB)

第二步要创建这个分区表:

-- Create table
create table AAA
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
partition by list(SecondsFlag)  
(  
   partition p1 values(1) tablespace tbs_haicheng 
  
);  
登录后复制
第三步再为t_stream表创建19999个分区:
DECLARE
parName varchar2(100);
sql_str varchar2(500);
BEGIN
  FOR  I  IN 2..20000 LOOP
    parName:='p'||I;
    sql_str:='ALTER TABLE aaa ADD partition'||' p'||I|| ' VALUES('||I||')';
    execute immediate sql_str;
    END LOOP;
  END; 
登录后复制

第四步为t_stream创建4个分区索引:
-- Create/Recreate indexes 
create index LOCAL_INDEX_REPEATRATE on AAA (REPEATRATE);
create index LOCAL_INDEX_SECONDSFLAG on AAA (SECONDSFLAG);
create index LOCAL_INDEX_STREAM on AAA (STREAMID);
create index LOCAL_INDEX_TIME on AAA (TIME);
登录后复制

第五步创建一个表结构与t_stream相似的表:

create table a
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
登录后复制
partition by list (SECONDSFLAG)
(
  partition P1 values (1)
    tablespace IPVIEW1
    pctfree 10
    initrans 1
    maxtrans 255
    storage
    (
      initial 64K
      minextents 1
      maxextents unlimited
    )
登录后复制
);
登录后复制
alter table AAA
  add constraint ID primary key (ID)
  using index 
  tablespace TBS_HAICHENG
  pctfree 10
  initrans 2
  maxtrans 255
  storage
  (
    initial 64K
    minextents 1
    maxextents unlimited
  );
登录后复制

第六步向表A中插入86400条数据:
declare
begin
  for i in 1..86400 loop
  insert into a
  (id, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate)
values
  (seq_aaa.nextval, 111, 1, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, SYSDATE, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111); 
  end loop;
  end ;
登录后复制

第七步:向t_stream表中copy数据
declare
begin
  FOR I IN 1..20000 LOOP
  insert into aaa
         select seq_aaa.nextval, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate,I from a;
    commit;
    END LOOP;
  end;
登录后复制

注意:实际上,这一部分我是将1-20000分成20份 ,开了20个线程同时执行,每个线程负责向1000个分区中copy数据(向每个分区录入86400条),这时候明白我为什么要创建表A了吧!

然后,就不管他了,玩游戏看电影去了,两天假结束,想起来去看了一眼插入到什么程度了,发现磁盘有的线程还在执行,有的线程由于表空间写满到32Gb无法再拓展而终止了。

看了一下序列已经被调用到6亿多,说明插入进去了6亿多条是数据。

首先是数据占用的空间问题,与估算的相差太多,我开始插入了上百万的数据,通过查看这上百万数据占用的空间估算出17亿数据占用的空间在180G左右,,而我准备出将近200G的磁盘空间以为足够了呢,结果差了这么多,分析下原因,最主要的一点是索引占用的空间:

我原来在预估的时候忘记了为表创建索引,以为没什么大影响,有10G空间足够索引占用了,可是事实大错特错了,通过下面的语句查看了下空间的占用情况:

1、表占用空间(0.008G   这是A表里的86400条数据占用的空间)
select segment_name, sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE'  group by segment_name;
2、索引占用空间(17.24GB)
select segment_name ,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type IN('INDEX PARTITION','INDEX') group by segment_name;
3、分区表TABLE PARTITION占用空间(63.5GB)
select segment_name,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE PARTITION' group by segment_name;
登录后复制
结果分别如下:

\

\

\

注:第三个图中的SEGMENT_NAME的值为T_STREAM 是上文创建的那个分区表。

我们看到结果发现,实际上表数据占用的空间是64GB,跟原来估算的几乎一致,多出来的部分是被索引占了,总共占用了将近100GB的空间,吓死哥了尴尬

缘何索引占用了这么多的空间?可能是我创建索引的方式不对?后续研究补充!

我们的程序采用的策略是首先将17亿条记录手动录入到数据库中,然后当监测到流指标时候对响应的数据进行update操作,也就是一般每秒执行20000个update语句,测试下性能:

declare
j  number ;
begin
  for i in 2000000..2020000 loop
update t_stream
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
  end loop;
  end ;
登录后复制

这种单纯以主键进行修改的时候他要进行全表扫描(所有的分区需要扫描到),效率很低,大约70s执行完,这才只是6亿数据。

所以我们要让他在执行update语句的时候尽量扫描单个分区,也就是说把那个分区字段当参数传递过来,如下语句所示:

declare
j  number ;
begin
  j:=1;
  for i in 2000000..2020000 loop
update aaa
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
        j:=j+1;
  end loop;
  end ;
登录后复制

测试这个代码块执行时间为3s,而且虽然现在是6亿数据,但是就是17亿数据执行时间也差不多是3s的,因为它扫描的永远只是20000个分区。而且我的电脑才四核处理器,服务器上24核呢。执行的肯定会比我电脑快多了吧,所以实现预定需求不成问题。

2、后来由于Oracle是收费的,不让用了,汗一个,接下来研究Mysql。

Mysql在建表以及分区的时候遇到两个问题:

问题一:建分区的时候总提示语法错误,无论怎么改都不让我创建分区,Mysql这么火的数据库不可能不支持分区啊。后来一查才知道Mysq5.0版本不支持分区,是从5.1才开始支持表的分区的尴尬,于是把我的数据库版本更换成5.5的,分区成功创建。

问题二:在Mysql上建20000个分区的过程中发现每次执行到中途就报错停止了,查询了解到Mysql的表分区数量是有限制的,每个表最多能有1024个分区。

这对我们影响不太大,大不了我就建1000个分区,每个分区存放86400*20条数据,相信每个分区百万条数据不算什么。

3、首先sqlite数据库不支持分区只好建立20000个表,由于sqlite不支持存储过程,我也没找到sqlite怎样写循环语句。但是建立20000个表 和 录入那么多的数据我们不可能一条一条的去执行写语句执行,所以需要另想办法,我的解决过程:

首先我想到可以用调用批处理文件的方式插入数据和建表:

建一个 批量建表.bat文件,文件内容如下:

@ECHO OFF 
For /L %%i in (1,1,20000) do (sqlite3.exe hc.db<createTable.bat bbb_%%i) 
pause 
登录后复制

createTable.bat 内容如下:

create table 1%(ID integer primary key autoincrement,
  STREAMID       NUMBER(10),
  STREAMTYPE     NUMBER(1),
  FAVAILABILITY  NUMBER(5),
  BANDWIDTH      NUMBER(4),
  VALIDBANDWIDTH NUMBER(4),
  MDIDF          NUMBER(5),
  MDIMLR         NUMBER(5),
  DELAY_TIME     NUMBER(5),
  IPINTERVAL     NUMBER(5),
  IPJITTER       NUMBER(5),
  TIME           DATE,
  MLT15          NUMBER(5),
  MLT24          NUMBER(5),
  MLS            NUMBER(5),
  SLICENUM       NUMBER(5),
  CACHEDTIME     NUMBER(5),
  STUCKTIME      NUMBER(5),
  GETSLICEERR    NUMBER(5),
  RETRANSMITRATE NUMBER(5),
  REPEATRATE     NUMBER(5),
  SECONDSFLAG    NUMBER(5),
  PART    NUMBER(5)
);
登录后复制

问题出现了,在执行批量建表.bat的时候提示sqlite语法错误。至今也没找到原因:

问题肯定是出现在传递的动态参数上,createTable.bat成功的接到了参数,语句在sqlite中执行不报错,放在bat里就报错。 所以第一次批量建表没成功。

那就用咱们的老本行,写JAVA程序:

需要一个驱动包:sqlitejdbc-v033-nested.jar。

代码如下:

import java.sql.*;
import org.sqlite.JDBC;
/**
 * sqlite创建数据库以及批量建表
 * @time 2014-01-07
 * @author HaiCheng
 *
 */
public class createTable {
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,否则报错
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=1 ;i<=20000;i++){
			 String sql1="  create table bbb"+i+"   " +
			 				  " 	(" +
							  " ID             INTEGER primary key autoincrement," +
							  "  STREAMID       NUMBER(10)," +
							  "  STREAMTYPE     NUMBER(1)," +
							  "  FAVAILABILITY  NUMBER(5)," +
							  "  BANDWIDTH      NUMBER(4)," +
							  "  VALIDBANDWIDTH NUMBER(4)," +
							  "  MDI_DF         NUMBER(5)," +
							  "  MDI_MLR        NUMBER(5)," +
							  "  DELAY_TIME     NUMBER(5)," +
							  "  IPINTERVAL     NUMBER(5)," +
							  "  IPJITTER       NUMBER(5)," +
							  "  TIME           DATE," +
							  "  MLT15          NUMBER(5)," +
							  "  MLT24          NUMBER(5)," +
							  "  MLS            NUMBER(5)," +
							  "  SLICENUM       NUMBER(5)," +
							  "  CACHEDTIME     NUMBER(5)," +
							  "  STUCKTIME      NUMBER(5)," +
							  "  GETSLICEERR    NUMBER(5)," +
							  "  RETRANSMITRATE NUMBER(5)," +
							  "  REPEATRATE     NUMBER(5)," +
							  "  SECONDSFLAG    NUMBER(5)," +
							  "  PART    NUMBER(5)" +
							  " 	);";
			 System.out.println(sql1);
			 String sql2="CREATE INDEX index_flag"+i+" ON bbb"+i+"(SECONDSFLAG);";
			 String sql3="CREATE INDEX index_part"+i+" ON bbb"+i+"(PART);";
			 stat.executeUpdate( sql1 );
			 stat.executeUpdate( sql2 );
			 stat.executeUpdate( sql3 );
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
		 }
		 catch( Exception e )
		 {
			 e.printStackTrace ( );
		 }
	}

}
登录后复制
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向第一个表中循环录入数据
 * @author HaiCheng
 *
 */
public class insertData {
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			//2,连接SQLite的JDBC
			Class.forName("org.sqlite.JDBC"); 
			//建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			Connection conn = DriverManager.getConnection(sql);

			//4,插入一条数据
			for(int i=1;i<=86400;i++){
				 	PreparedStatement prep = conn.prepareStatement("insert into bbb1(STREAMID) values (?);");
				    prep.setInt(1, 0);
				    prep.addBatch();
				    conn.setAutoCommit(false);
				    prep.executeBatch();
			 }
			 conn.setAutoCommit(true);
登录后复制
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
登录后复制
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向其余19999个表中批量拷贝数据
 * @author HaiCheng
 *
 */
public class copyData {
	public static void main(String[] args) throws Exception {
		try{
			 //1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			 String thisPath = "e:/haicheng.db";
			 String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=2;i<=20000;i++){
			 String sql1="insert into bbb"+i+"  select * from  bbb1";
			 System.out.println(sql1);
			 stat.execute(sql1);
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
登录后复制
依次执行这三个类,当执行第三个类的时候也就是批量向数据库中录入数据的时候,当数据文件大小达到2G的临界点的时候(不同方式测试多遍都是这种情况),再继续写入数据,那么数据文件就会损坏(文件大小都变了,从2GB变成1MB了)。

分析各种原因:

(1)、正在写入数据的时候断电(排除,没有断电)

(2)、磁盘有坏道(排除,在磁盘中放些其他的文件,换一段空间存储这个数据同样到2GB崩溃)

(3)、数据文件所在磁盘空间不足(排除,硬盘空间足够、sqlite也不像Oracle那样有着表空间的概念)

最终我也没找到什么原因,发帖求助。

-------------------------------------------------------------------------------------------------------------------------

尴尬上面那些还是年前写的东西,也没有写完。最终是sqlite的问题没有解决。目前还是用着Mysql

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用ddrescue在Linux上恢复数据 使用ddrescue在Linux上恢复数据 Mar 20, 2024 pm 01:37 PM

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

WIN10服务主机太占cpu的处理操作过程 WIN10服务主机太占cpu的处理操作过程 Mar 27, 2024 pm 02:41 PM

1、首先我们右击任务栏空白处,选择【任务管理器】选项,或者右击开始徽标,然后再选择【任务管理器】选项。2、在打开的任务管理器界面,我们点击最右端的【服务】选项卡。3、在打开的【服务】选项卡,点击下方的【打开服务】选项。4、在打开的【服务】窗口,右击【InternetConnectionSharing(ICS)】服务,然后选择【属性】选项。5、在打开的属性窗口,将【打开方式】修改为【禁用】,点击【应用】后点击【确定】。6、点击开始徽标,然后点击关机按钮,选择【重启】,完成电脑重启就行了。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 May 07, 2024 pm 05:00 PM

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,

首个自主完成人类任务机器人出现,五指灵活速度超人,大模型加持虚拟空间训练 首个自主完成人类任务机器人出现,五指灵活速度超人,大模型加持虚拟空间训练 Mar 11, 2024 pm 12:10 PM

这周,由OpenAI、微软、贝佐斯和英伟达投资的机器人公司FigureAI宣布获得接近7亿美元的融资,计划在未来一年内研发出可独立行走的人形机器人。而特斯拉的擎天柱也屡屡传出好消息。没人怀疑,今年会是人形机器人爆发的一年。一家位于加拿大的机器人公司SanctuaryAI最近发布了一款全新的人形机器人Phoenix。官方号称它能以和人类一样的速率自主完成很多工作。世界上第一台能以人类速度自主完成任务的机器人Pheonix可以轻轻地抓取、移动并优雅地将每个对象放置在它的左右两侧。它能够自主识别物体的

See all articles