首页 数据库 mysql教程 C++ 关于模板之间的继承, 导致的模板子类的成员看不到(cannot

C++ 关于模板之间的继承, 导致的模板子类的成员看不到(cannot

Jun 07, 2016 pm 03:37 PM
c c++ 关于 导致 成员 模板 继承

首先, 开门见山, 这个难题的解决办法是用this指针, 或者使用父类配合着scope resolution。 这个问题是我在学习linked list as an ADT , linked list 是含有纯虚函数, 所以是抽象基础类。 然后又linked list 继承出unordered linked list。 注意, 还可以

首先, 开门见山, 这个难题的解决办法是用this指针, 或者使用父类配合着scope resolution。

这个问题是我在学习linked list as an ADT , linked list 是含有纯虚函数, 所以是抽象基础类。 然后又linked list 继承出unordered linked list。 注意, 还可以由linked list 继承出ordered linked list。

言归正传, 出现问题的代码如下:

linkedlist.h 文件如下:

#ifndef H_LinkedListType
#define H_LinkedListType

#include <iostream>
#include <cassert>

using namespace std;

//Definition of the node

template <class type>
struct nodeType
{
	Type info;
	nodeType<type> *link;
};

template <class type>
class linkedListIterator
{
public:
   linkedListIterator();
     //Default constructor
     //Postcondition: current = NULL;

   linkedListIterator(nodeType<type> *ptr);
     //Constructor with a parameter.
     //Postcondition: current = ptr;

   Type operator*();
     //Function to overload the dereferencing operator *.
     //Postcondition: Returns the info contained in the node.

   linkedListIterator<type> operator++();
     //Overload the pre-increment operator.
     //Postcondition: The iterator is advanced to the next
     //               node.

   bool operator==(const linkedListIterator<type>& right) const;
     //Overload the equality operator.
     //Postcondition: Returns true if this iterator is equal to
     //               the iterator specified by right,
     //               otherwise it returns the value false.

   bool operator!=(const linkedListIterator<type>& right) const;
     //Overload the not equal to operator.
     //Postcondition: Returns true if this iterator is not
     //               equal to the iterator specified by
     //               right; otherwise it returns the value
     //               false.

private:
   nodeType<type> *current; //pointer to point to the current
                            //node in the linked list
};

template <class type>
linkedListIterator<type>::linkedListIterator()
{
    current = NULL;
}

template <class type>
linkedListIterator<type>::
                  linkedListIterator(nodeType<type> *ptr)
{
    current = ptr;
}

template <class type>
Type linkedListIterator<type>::operator*()
{
    return current->info;
}

template <class type>
linkedListIterator<type> linkedListIterator<type>::operator++()
{
    current = current->link;

    return *this;
}

template <class type>
bool linkedListIterator<type>::operator==
               (const linkedListIterator<type>& right) const
{
    return (current == right.current);
}

template <class type>
bool linkedListIterator<type>::operator!=
                 (const linkedListIterator<type>& right) const
{    return (current != right.current);
}


//*****************  class linkedListType   ****************

template <class type>
class linkedListType
{
public:
    const linkedListType<type>& operator=
                         (const linkedListType<type>&);
      //Overload the assignment operator.

    void initializeList();
      //Initialize the list to an empty state.
      //Postcondition: first = NULL, last = NULL, count = 0;

    bool isEmptyList() const;
      //Function to determine whether the list is empty.
      //Postcondition: Returns true if the list is empty,
      //               otherwise it returns false.

    void print() const;
      //Function to output the data contained in each node.
      //Postcondition: none

    int length() const;
      //Function to return the number of nodes in the list.
      //Postcondition: The value of count is returned.

    void destroyList();
      //Function to delete all the nodes from the list.
      //Postcondition: first = NULL, last = NULL, count = 0;

    Type front() const;
      //Function to return the first element of the list.
      //Precondition: The list must exist and must not be
      //              empty.
      //Postcondition: If the list is empty, the program
      //               terminates; otherwise, the first
      //               element of the list is returned.

    Type back() const;
      //Function to return the last element of the list.
      //Precondition: The list must exist and must not be
      //              empty.
      //Postcondition: If the list is empty, the program
      //               terminates; otherwise, the last
      //               element of the list is returned.

    virtual bool search(const Type& searchItem) const = 0;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is in the
      //               list, otherwise the value false is
      //               returned.

    virtual void insertFirst(const Type& newItem) = 0;
      //Function to insert newItem at the beginning of the list.
      //Postcondition: first points to the new list, newItem is
      //               inserted at the beginning of the list,
      //               last points to the last node in the list,
      //               and count is incremented by 1.

    virtual void insertLast(const Type& newItem) = 0;
      //Function to insert newItem at the end of the list.
      //Postcondition: first points to the new list, newItem
      //               is inserted at the end of the list,
      //               last points to the last node in the list,
      //               and count is incremented by 1.

    virtual void deleteNode(const Type& deleteItem) = 0;
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing
      //               deleteItem is deleted from the list.
      //               first points to the first node, last
      //               points to the last node of the updated
      //               list, and count is decremented by 1.

    linkedListIterator<type> begin();
      //Function to return an iterator at the begining of the
      //linked list.
      //Postcondition: Returns an iterator such that current is
      //               set to first.

    linkedListIterator<type> end();
      //Function to return an iterator one element past the
      //last element of the linked list.
      //Postcondition: Returns an iterator such that current is
      //               set to NULL.

    linkedListType();
      //default constructor
      //Initializes the list to an empty state.
      //Postcondition: first = NULL, last = NULL, count = 0;

    linkedListType(const linkedListType<type>& otherList);
      //copy constructor

    ~linkedListType();
      //destructor
      //Deletes all the nodes from the list.
      //Postcondition: The list object is destroyed.

protected:
    int count;   //variable to store the number of
                 //elements in the list
    nodeType<type> *first; //pointer to the first node of the list
    nodeType<type> *last;  //pointer to the last node of the list

private:
    void copyList(const linkedListType<type>& otherList);
      //Function to make a copy of otherList.
      //Postcondition: A copy of otherList is created and
      //               assigned to this list.
};


template <class type>
bool linkedListType<type>::isEmptyList() const
{
    return(first == NULL);
}

template <class type>
linkedListType<type>::linkedListType() //default constructor
{
    first = NULL;
    last = NULL;
    count = 0;
}

template <class type>
void linkedListType<type>::destroyList()
{
    nodeType<type> *temp;   //pointer to deallocate the memory
                            //occupied by the node
    while (first != NULL)   //while there are nodes in the list
    {
        temp = first;        //set temp to the current node
        first = first->link; //advance first to the next node
        delete temp;   //deallocate the memory occupied by temp
    }
    last = NULL; //initialize last to NULL; first has already
                 //been set to NULL by the while loop
    count = 0;
}

template <class type>
void linkedListType<type>::initializeList()
{
	destroyList(); //if the list has any nodes, delete them
}

template <class type>
void linkedListType<type>::print() const
{
    nodeType<type> *current; //pointer to traverse the list

    current = first;    //set current so that it points to
                        //the first node
    while (current != NULL) //while more data to print
    {
        cout info link;
    }
}//end print

template <class type>
int linkedListType<type>::length() const
{
    return count;
}  //end length

template <class type>
Type linkedListType<type>::front() const
{
    assert(first != NULL);

    return first->info; //return the info of the first node
}//end front

template <class type>
Type linkedListType<type>::back() const
{
    assert(last != NULL);

    return last->info; //return the info of the last node
}//end back

template <class type>
linkedListIterator<type> linkedListType<type>::begin()
{
    linkedListIterator<type> temp(first);

    return temp;
}

template <class type>
linkedListIterator<type> linkedListType<type>::end()
{
    linkedListIterator<type> temp(NULL);

    return temp;
}

template <class type>
void linkedListType<type>::copyList
                   (const linkedListType<type>& otherList)
{
    nodeType<type> *newNode; //pointer to create a node
    nodeType<type> *current; //pointer to traverse the list

    if (first != NULL) //if the list is nonempty, make it empty
       destroyList();

    if (otherList.first == NULL) //otherList is empty
    {
        first = NULL;
        last = NULL;
        count = 0;
    }
    else
    {
        current = otherList.first; //current points to the
                                   //list to be copied
        count = otherList.count;

            //copy the first node
        first = new nodeType<type>;  //create the node

        first->info = current->info; //copy the info
        first->link = NULL;        //set the link field of
                                   //the node to NULL
        last = first;              //make last point to the
                                   //first node
        current = current->link;     //make current point to
                                     //the next node

           //copy the remaining list
        while (current != NULL)
        {
            newNode = new nodeType<type>;  //create a node
            newNode->info = current->info; //copy the info
            newNode->link = NULL;       //set the link of
                                        //newNode to NULL
            last->link = newNode;  //attach newNode after last
            last = newNode;        //make last point to
                                   //the actual last node
            current = current->link;   //make current point
                                       //to the next node
        }//end while
    }//end else
}//end copyList

template <class type>
linkedListType<type>::~linkedListType() //destructor
{
   destroyList();
}//end destructor

template <class type>
linkedListType<type>::linkedListType
                      (const linkedListType<type>& otherList)
{
   	first = NULL;
    copyList(otherList);
}//end copy constructor

         //overload the assignment operator
template <class type>
const linkedListType<type>& linkedListType<type>::operator=
                      (const linkedListType<type>& otherList)
{
    if (this != &otherList) //avoid self-copy
    {
        copyList(otherList);
    }//end else

     return *this;
}

#endif
</type></type></type></class></type></type></class></type></class></type></type></type></type></type></type></class></type></type></type></class></type></type></type></class></type></class></type></class></type></class></type></type></class></type></class></type></type></class></type></class></type></class></type></type></type></type></type></type></type></type></class></type></type></class></type></type></class></type></type></class></type></class></type></type></class></type></class></type></type></type></type></type></class></type></class></cassert></iostream>
登录后复制

unorderedLinkedList.h文件如下:
#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

#include "linkedList.h"

using namespace std;

template <class type>
class unorderedLinkedList: public linkedListType<type>
{
public:
    bool search(const Type& searchItem) const;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is in the
      //               list, otherwise the value false is
      //               returned.

    void insertFirst(const Type& newItem);
      //Function to insert newItem at the beginning of the list.
      //Postcondition: first points to the new list, newItem is
      //               inserted at the beginning of the list,
      //               last points to the last node in the
      //               list, and count is incremented by 1.

    void insertLast(const Type& newItem);
      //Function to insert newItem at the end of the list.
      //Postcondition: first points to the new list, newItem
      //               is inserted at the end of the list,
      //               last points to the last node in the
      //               list, and count is incremented by 1.

    void deleteNode(const Type& deleteItem);
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing
      //               deleteItem is deleted from the list.
      //               first points to the first node, last
      //               points to the last node of the updated
      //               list, and count is decremented by 1.
};


template <class type>
bool unorderedLinkedList<type>::
                   search(const Type& searchItem) const
{
    nodeType<type> *current; //pointer to traverse the list
    bool found = false;

    current =  first; //set current to point to the first
                     //node in the list

    while (current != NULL && !found)    //search the list
        if (current->info == searchItem) //searchItem is found
            found = true;
        else
            current = current->link; //make current point to
                                     //the next node
    return found;
}//end search

template <class type>
void unorderedLinkedList<type>::insertFirst(const Type& newItem)
{
    nodeType<type> *newNode; //pointer to create the new node

    newNode = new nodeType<type>; //create the new node

    newNode->info = newItem;    //store the new item in the node
    newNode->link = this -> first;      //insert newNode before first
    first = newNode;            //make first point to the
                                //actual first node
    count++;                    //increment count

    if (last == NULL)   //if the list was empty, newNode is also
                        //the last node in the list
        last = newNode;
}//end insertFirst

template <class type>
void unorderedLinkedList<type>::insertLast(const Type& newItem)
{
    nodeType<type> *newNode; //pointer to create the new node

    newNode = new nodeType<type>; //create the new node

    newNode->info = newItem;  //store the new item in the node
    newNode->link = NULL;     //set the link field of newNode
                              //to NULL

    if ( first == NULL)  //if the list is empty, newNode is
                        //both the first and last node
    {
         first = newNode;
         last = newNode;
         count++;        //increment count
    }
    else    //the list is not empty, insert newNode after last
    {
         last->link = newNode; //insert newNode after last
         last = newNode; //make last point to the actual
                        //last node in the list
         count++;        //increment count
    }
}//end insertLast


template <class type>
void unorderedLinkedList<type>::deleteNode(const Type& deleteItem)
{
    nodeType<type> *current; //pointer to traverse the list
    nodeType<type> *trailCurrent; //pointer just before current
    bool found;

    if (first == NULL)    //Case 1; the list is empty.
        cout info == deleteItem) //Case 2
        {
            current = first;
            first = first->link;
            count--;
            if (first == NULL)    //the list has only one node
                last = NULL;
            delete current;
        }
        else //search the list for the node with the given info
        {
            found = false;
            trailCurrent = first;  //set trailCurrent to point
                                   //to the first node
            current = first->link; //set current to point to
                                   //the second node

            while (current != NULL && !found)
            {
                if (current->info != deleteItem)
                {
                    trailCurrent = current;
                    current = current-> link;
                }
                else
                    found = true;
            }//end while

            if (found) //Case 3; if found, delete the node
            {
                trailCurrent->link = current->link;
                this -> count--;

                if (last == current)   //node to be deleted
                                       //was the last node
                    last = trailCurrent; //update the value
                                         //of last
                delete current;  //delete the node from the list
            }
            else
                cout <br>
主程序如下main.cpp:
<pre class="brush:php;toolbar:false">//This program tests various operation of a linked list
//34 62 21 90 66 53 88 24 10 -999

#include <iostream>
#include "unorderedLinkedList.h"

using namespace std;

int main()
{
    unorderedLinkedList<int> list1, list2;          //Line 1
    int num;                                        //Line 2

    cout > num;                                     //Line 4

    while (num != -999)                             //Line 5
    {
        list1.insertLast(num);                      //Line 6
        cin >> num;                                 //Line 7
    }

    cout > num;                                     //Line 19
    cout  it;                     //Line 27

    for (it = list1.begin(); it != list1.end();
                             ++it)                  //Line 28
        cout <br>
编译结果error message 如下:
<p><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140730194616575%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvYTEzMDczNw%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fa130737%2Farticle%2Fdetails%2F38305293" class="lazy" alt="C++ 关于模板之间的继承, 导致的模板子类的成员看不到(cannot" ><br>
</p>
<p><br>
</p>
<p>错误分析: 按照标准看, 上述的错误似乎有点问题。 因为first, last, count 都是父类的成员变量。 存取类型是protected。 我们的子类unorderedLinkedList 类是公开方式(public)继承linkedList。按说子类即unorderedLinkedList 的成员函数(虚函数)当然可以access 父类的protected 成员变量。 但是在这里出错了。 为什么呢?</p>
<p><br>
</p>
<p>原因是我们这里是模板类之间的继承。 如果是正常的普通类之间的继承, 结果一定是没有问题的。 当然access会通过, 编译会okay。 但是这里是模本类之间的继承。</p>
<p>在这里, 我们需要使用this 指针, 也可以使用scope resolution解决模板类之间的继承时变量访问的问题。 下面我们修改unorderedLinkedList.h 如下:</p>
<p>将模板成员函数定义count, first, last 分别用this -> count, this -> first, this -> last(第二中解决办法是换为linkedListType<type>::first, linkedListType<type>::count,linkedListType<type>::last)。 不光如此, 当在子类中调用模板父类的成员函数的时候, 也要使用this 指针或者用scope resotion 解决这个问题。</type></type></type></p>
<p><br>
</p>
<pre class="brush:php;toolbar:false">#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

#include "linkedList.h"

using namespace std;

template <class type>
class unorderedLinkedList: public linkedListType<type>
{
public:
    bool search(const Type& searchItem) const;
      //Function to determine whether searchItem is in the list.
      //Postcondition: Returns true if searchItem is in the
      //               list, otherwise the value false is
      //               returned.

    void insertFirst(const Type& newItem);
      //Function to insert newItem at the beginning of the list.
      //Postcondition: first points to the new list, newItem is
      //               inserted at the beginning of the list,
      //               last points to the last node in the
      //               list, and count is incremented by 1.

    void insertLast(const Type& newItem);
      //Function to insert newItem at the end of the list.
      //Postcondition: first points to the new list, newItem
      //               is inserted at the end of the list,
      //               last points to the last node in the
      //               list, and count is incremented by 1.

    void deleteNode(const Type& deleteItem);
      //Function to delete deleteItem from the list.
      //Postcondition: If found, the node containing
      //               deleteItem is deleted from the list.
      //               first points to the first node, last
      //               points to the last node of the updated
      //               list, and count is decremented by 1.
};


template <class type>
bool unorderedLinkedList<type>::
                   search(const Type& searchItem) const
{
    nodeType<type> *current; //pointer to traverse the list
    bool found = false;

    current =  this -> first; //set current to point to the first
                     //node in the list

    while (current != NULL && !found)    //search the list
        if (current->info == searchItem) //searchItem is found
            found = true;
        else
            current = current->link; //make current point to
                                     //the next node
    return found;
}//end search

template <class type>
void unorderedLinkedList<type>::insertFirst(const Type& newItem)
{
    nodeType<type> *newNode; //pointer to create the new node

    newNode = new nodeType<type>; //create the new node

    newNode->info = newItem;    //store the new item in the node
    newNode->link = this -> first;      //insert newNode before first
    this -> first = newNode;            //make first point to the
                                //actual first node
    this -> count++;                    //increment count

    if (this -> last == NULL)   //if the list was empty, newNode is also
                        //the last node in the list
        this -> last = newNode;
}//end insertFirst

template <class type>
void unorderedLinkedList<type>::insertLast(const Type& newItem)
{
    nodeType<type> *newNode; //pointer to create the new node

    newNode = new nodeType<type>; //create the new node

    newNode->info = newItem;  //store the new item in the node
    newNode->link = NULL;     //set the link field of newNode
                              //to NULL

    if ( this -> first == NULL)  //if the list is empty, newNode is
                        //both the first and last node
    {
         this -> first = newNode;
         this -> last = newNode;
         this -> count++;        //increment count
    }
    else    //the list is not empty, insert newNode after last
    {
         this -> last->link = newNode; //insert newNode after last
         this -> last = newNode; //make last point to the actual
                        //last node in the list
         this -> count++;        //increment count
    }
}//end insertLast


template <class type>
void unorderedLinkedList<type>::deleteNode(const Type& deleteItem)
{
    nodeType<type> *current; //pointer to traverse the list
    nodeType<type> *trailCurrent; //pointer just before current
    bool found;

    if (this -> first == NULL)    //Case 1; the list is empty.
        cout  first->info == deleteItem) //Case 2
        {
            current = this -> first;
            this -> first = this -> first->link;
            this -> count--;
            if (this -> first == NULL)    //the list has only one node
                this -> last = NULL;
            delete current;
        }
        else //search the list for the node with the given info
        {
            found = false;
            trailCurrent = this -> first;  //set trailCurrent to point
                                   //to the first node
            current = this -> first->link; //set current to point to
                                   //the second node

            while (current != NULL && !found)
            {
                if (current->info != deleteItem)
                {
                    trailCurrent = current;
                    current = current-> link;
                }
                else
                    found = true;
            }//end while

            if (found) //Case 3; if found, delete the node
            {
                trailCurrent->link = current->link;
                this -> count--;

                if (this -> last == current)   //node to be deleted
                                       //was the last node
                    this -> last = trailCurrent; //update the value
                                         //of last
                delete current;  //delete the node from the list
            }
            else
                cout <br>
编译通过, 运行结果如下:
<p><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140730200300296%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvYTEzMDczNw%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fa130737%2Farticle%2Fdetails%2F38305293" class="lazy" alt="C++ 关于模板之间的继承, 导致的模板子类的成员看不到(cannot" ><br>
</p>
<p><br>
</p>
<p><br>
</p>
<p>关于这个模板继承, 子类使用父类的成员是使用this, 或者scope resolution, 解释如下:</p>
<p>//To make the code valid either use this->f(), or Base::f(). Using the -fpermissive flag will also<br>
//let the compiler accept the code, by marking all function calls for which no declaration is visible<br>
//at the time of definition of the template for later lookup at instantiation time, as if it were a<br>
//dependent call. We do not recommend using -fpermissive to work around invalid code, and it will also<br>
//only catch cases where functions in base classes are called, not where variables in base classes are<br>
//used (as in the example above).<br>
//<br>
//Note that some compilers (including G++ versions prior to 3.4) get these examples wrong and accept above<br>
//code without an error. Those compilers do not implement two-stage name lookup correctly.<br>
//<br>
</p>
<p><br>
</p>
<p>接下来是我在stack overflow 网站上得到的解答:</p>
<p><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140730201910930%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvYTEzMDczNw%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fa130737%2Farticle%2Fdetails%2F38305293" class="lazy" alt="C++ 关于模板之间的继承, 导致的模板子类的成员看不到(cannot" ><br>
</p>


</type></type></type></class></type></type></type></class></type></type></type></class></type></type></class></type></class>
登录后复制
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C++对象布局与内存对齐,优化内存使用效率 C++对象布局与内存对齐,优化内存使用效率 Jun 05, 2024 pm 01:02 PM

C++对象布局和内存对齐优化内存使用效率:对象布局:数据成员按声明顺序存储,优化空间利用率。内存对齐:数据在内存中对齐,提升访问速度。alignas关键字指定自定义对齐,例如64字节对齐的CacheLine结构,提高缓存行访问效率。

Golang 与 C++ 的异同 Golang 与 C++ 的异同 Jun 05, 2024 pm 06:12 PM

Golang和C++分别是垃圾回收和手动内存管理编程语言,语法和类型系统各异。Golang通过Goroutine实现并发编程,C++通过线程实现。Golang内存管理简单,C++性能更强。实战案例中,Golang代码更简洁,C++性能优势明显。

如何在C++中实现策略设计模式? 如何在C++中实现策略设计模式? Jun 06, 2024 pm 04:16 PM

策略模式在C++中的实现步骤如下:定义策略接口,声明需要执行的方法。创建具体策略类,分别实现该接口并提供不同的算法。使用上下文类持有具体策略类的引用,并通过它执行操作。

C++ 中继承和多态性如何影响类的耦合度? C++ 中继承和多态性如何影响类的耦合度? Jun 05, 2024 pm 02:33 PM

继承和多态性会影响类的耦合度:继承会增加耦合度,因为派生类依赖于基类。多态性可以降低耦合度,因为对象可以通过虚函数和基类指针以一致的方式响应消息。最佳实践包括谨慎使用继承、定义公共接口、避免向基类添加数据成员,以及通过依赖注入解耦类。实战案例展示了如何使用多态性和依赖注入降低银行账户应用程序中的耦合度。

C++ 智能指针的底层实现原理有哪些? C++ 智能指针的底层实现原理有哪些? Jun 05, 2024 pm 01:17 PM

C++智能指针通过指针计数、析构函数和虚函数表实现自动内存管理。指针计数跟踪引用数,当引用数降为0时,析构函数释放原始指针。虚函数表启用多态性,允许针对不同类型的智能指针实现特定行为。

如何在C++中实现嵌套异常处理? 如何在C++中实现嵌套异常处理? Jun 05, 2024 pm 09:15 PM

嵌套异常处理在C++中通过嵌套的try-catch块实现,允许在异常处理程序中引发新异常。嵌套的try-catch步骤如下:1.外部try-catch块处理所有异常,包括内部异常处理程序抛出的异常。2.内部try-catch块处理特定类型的异常,如果发生超出范围的异常,则将控制权交给外部异常处理程序。

如何遍历C++ STL容器? 如何遍历C++ STL容器? Jun 05, 2024 pm 06:29 PM

要遍历STL容器,可以使用容器的begin()和end()函数获取迭代器范围:向量:使用for循环遍历迭代器范围。链表:使用next()成员函数遍历链表元素。映射:获取键值对迭代器,使用for循环遍历。

如何使用C++复制文件? 如何使用C++复制文件? Jun 05, 2024 pm 02:44 PM

如何在C++中复制文件?使用std::ifstream和std::ofstream流读取源文件,写入目标文件,并关闭流。1.创建源文件和目标文件的新流。2.检查流是否成功打开。3.逐块复制文件数据,并关闭流以释放资源。

See all articles