TMSC64XX DSP混合汇编2
自己研究了一个星期还是没什么进展!自己写的代码和大家分享,希望对大家有帮助! extern int a = 0; //定义外部变量,但要先赋值。 extern int asmfunc(int); //汇编函数 int main() { int ret = 1; ret = asmfunc(ret); printf("ret is %d/n",ret); } .glo
自己研究了一个星期还是没什么进展!自己写的代码和大家分享,希望对大家有帮助!
extern int a = 0; //定义外部变量,但要先赋值。
extern int asmfunc(int); //汇编函数
int main()
{
int ret = 1;
ret = asmfunc(ret);
printf("ret is %d/n",ret);
}
.global _asmfunc //调用C函数
.global _a //调用C的变量
_asmfunc:
mvk .S 12,a2
STW .D a2,*b14(_a) //给变量a赋值
LDW .D *+b14(_a),a3 //把变量的值赋给a3寄存器
NOP 4
add .L a3,a4,a3
STW .D a3,*b14(_a)
mv .S a3,a4
STW .D a3,*b14(_a)
mv .S a3,a4
mvk .S _a,a2
B .S B3
NOP 5
.end

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

大规模语言模型(LLMs)在许多重要任务中展现出了引人注目的能力,包括自然语言理解、语言生成和复杂推理,并对社会产生了深远的影响。然而,这些出色的能力却需要大量的训练资源(如左图所示)和较长的推理时间(如右图所示)。因此,研究人员需要开发有效的技术手段来解决它们的效率问题。此外,从图的右侧还可以看出,一些高效的LLMs(LanguageModels)如Mistral-7B,已经成功应用于LLMs的设计和部署中。这些高效的LLMs在保持与LLaMA1-33B相近的准确性的同时,能够大大减少推理内存

3纳米制程,性能超越H100!最近,据外媒DigiTimes爆料,英伟达正在开发下一代GPU,代号为「Blackwell」的B100据称,作为面向人工智能(AI)和高性能计算(HPC)应用的产品,B100将采用台积电的3nm工艺制程,以及更为复杂的多芯片模块(MCM)设计,并将于2024年第四季度现身。对于垄断了人工智能GPU市场80%以上份额的英伟达来说,则可以借着B100趁热打铁,在这波AI部署的热潮中进一步狙击AMD、英特尔等挑战者。根据英伟达的估计,到2027年,该领域的产值预计将达到约

近年来,多模态学习受到重视,特别是文本 - 图像合成和图像 - 文本对比学习两个方向。一些 AI 模型因在创意图像生成、编辑方面的应用引起了公众的广泛关注,例如 OpenAI 先后推出的文本图像模型 DALL・E 和 DALL-E 2,以及英伟达的 GauGAN 和 GauGAN2。谷歌也不甘落后,在 5 月底发布了自己的文本到图像模型 Imagen,看起来进一步拓展了字幕条件(caption-conditional)图像生成的边界。仅仅给出一个场景的描述,Imagen 就能生成高质量、高分辨率

多模态大模型最全综述来了!由微软7位华人研究员撰写,足足119页——它从目前已经完善的和还处于最前沿的两类多模态大模型研究方向出发,全面总结了五个具体研究主题:视觉理解视觉生成统一视觉模型LLM加持的多模态大模型多模态agent并重点关注到一个现象:多模态基础模型已经从专用走向通用。Ps.这也是为什么论文开头作者就直接画了一个哆啦A梦的形象。谁适合阅读这份综述(报告)?用微软的原话来说:只要你有兴趣学习多模态基础模型的基础知识和最新进展,无论你是专业研究员还是在校学生,这个内容都非常适合你一起来

图像到视频生成(I2V)任务是计算机视觉领域的一项挑战,旨在将静态图像转化为动态视频。这个任务的难点在于从单张图像中提取并生成时间维度的动态信息,同时保持图像内容的真实性和视觉上的连贯性。现有的I2V方法通常需要复杂的模型架构和大量的训练数据来实现这一目标。近期,快手主导的一项新研究成果《I2V-Adapter:AGeneralImage-to-VideoAdapterforVideoDiffusionModels》发布。该研究引入了一种创新的图像到视频转换方法,提出了一种轻量级适配器模块,即I

大型模型正在实现语言和视觉之间的跨越,有望无缝地理解和生成文本和图像内容。在最近的一系列研究中,多模态特征集成不仅是一个不断发展的趋势,而且已经带来了从多模态对话到内容创建工具等关键进步。大型语言模型在文本理解和生成方面已经展现出无与伦比的能力。然而,同时生成具有连贯文本叙述的图像仍然是一个有待发展的领域近日,加州大学圣克鲁兹分校的研究团队提出了MiniGPT-5,这是一种以「生成式voken」概念为基础的创新型交错视觉语言生成技术。论文地址:https://browse.arxiv.org/p

在本文中,我们将讨论什么是TomohikoSakamoto算法以及如何使用该算法来识别给定日期是一周中的哪一天。有多种算法可以知道星期几,但这种算法是最强大的一种。该算法以尽可能最小的时间和最小的空间复杂度找到该日期出现的月份中的哪一天。问题陈述-我们根据格鲁吉亚历给出一个日期,我们的任务是使用TomohikoSakamoto的算法找出给定日期是一周中的哪一天。示例输入-日期=30,月份=04,年份=2020输出-给定日期是星期一输入-日期=15,月份=03,年份=2012输出-给定日期是星期四

EfficientSAM这篇工作以5/5/5满分收录于CVPR2024!作者在某社交媒体上分享了该结果,如下图所示:LeCun图灵奖得主也强烈推荐了该工作!在近期的研究中,Meta研究者提出了一种新的改进方法,即使用SAM的掩码图像预训练(SAMI)。这一方法结合了MAE预训练技术和SAM模型,旨在实现高质量的预训练ViT编码器。通过SAMI,研究者试图提高模型的性能和效率,为视觉任务提供更好的解决方案。这一方法的提出为进一步探索和发展计算机视觉和深度学习领域带来了新的思路和机遇。通过结合不同的
