首页 数据库 mysql教程 漫谈 Clustering (2): k

漫谈 Clustering (2): k

Jun 07, 2016 pm 03:43 PM
http

原文:http://blog.pluskid.org/?p=40 上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。 k-medoids 和

原文:http://blog.pluskid.org/?p=40

上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。

k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-means 中,我们将中心点取为当前 cluster 中所有数据点的平均值:

漫谈 Clustering (2): k

漫谈 Clustering (2): k

Rough Collie

并且我们已经证明在固定了各个数据点的 assignment 的情况下,这样选取的中心点能够把目标函数 漫谈 Clustering (2): k 最小化。然而在 k-medoids 中,我们将中心点的选取限制在当前 cluster 所包含的数据点的集合中。换句话说,在 k-medoids 算法中,我们将从当前 cluster 中选取这样一个点——它到其他所有(当前 cluster 中的)点的距离之和最小——作为中心点。k-means 和 k-medoids 之间的差异就类似于一个数据样本的均值 (mean) 和中位数 (median) 之间的差异:前者的取值范围可以是连续空间中的任意值,而后者只能在给样本给定的那些点里面选。那么,这样做的好处是什么呢?
一个最直接的理由就是 k-means 对数据的要求太高了,它使用欧氏距离描述数据点之间的差异 (dissimilarity) ,从而可以直接通过求均值来计算中心点。这要求数据点处在一个欧氏空间之中。

然而并不是所有的数据都能满足这样的要求,对于数值类型的特征,比如身高,可以很自然地用这样的方式来处理,但是类别 (categorical) 类型的特征就不行了。举一个简单的例子,如果我现在要对犬进行聚类,并且希望直接在所有犬组成的空间中进行,k-means 就无能为力了,因为欧氏距离 漫谈 Clustering (2): k 在这里不能用了:一只Samoyed 减去一只 Rough Collie 然后在平方一下?天知道那是什么!再加上一只 German Shepherd Dog 然后求一下平均值?根本没法算,k-means 在这里寸步难行!

在 k-medoids 中,我们把原来的目标函数 漫谈 Clustering (2): k 中的欧氏距离改为一个任意的 dissimilarity measure 函数 漫谈 Clustering (2): k

<img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fblog.pluskid.org%2Flatexrender%2Fpictures%2Fc2f42fa0d2b5b49f31e8a7459af89a4e.png&refer=http%3A%2F%2Fblog.csdn.net%2Fzhazhiqiang%2Farticle%2Fdetails%2F19554235" class="lazy" alt="漫谈 Clustering (2): k" >
登录后复制

最常见的方式是构造一个 dissimilarity matrix 漫谈 Clustering (2): k 来代表 漫谈 Clustering (2): k,其中的元素 漫谈 Clustering (2): k 表示第 漫谈 Clustering (2): k 只狗和第 漫谈 Clustering (2): k只狗之间的差异程度,例如,两只 Samoyed 之间的差异可以设为 0 ,一只 German Shepherd Dog 和一只 Rough Collie 之间的差异是 0.7,和一只 Miniature Schnauzer 之间的差异是 1 ,等等。

除此之外,由于中心点是在已有的数据点里面选取的,因此相对于 k-means 来说,不容易受到那些由于误差之类的原因产生的 Outlier 的影响,更加 robust 一些。

扯了这么多,还是直接来看看 k-medoids 的效果好了,由于 k-medoids 对数据的要求比 k-means 要低,所以 k-means 能处理的情况自然 k-medoids 也能处理,为了能先睹为快,我们偷一下懒,直接在中的 k-means 代码的基础上稍作一点修改,还用同样的例子。将代码的 45 到 47 行改成下面这样:

45
46
47
48
49
50
登录后复制
        <span><strong>for</strong></span> j <span><strong>in</strong></span> <span>range</span>(k):
            idx_j = (labels == j).nonzero()
            distj = distmat(X[idx_j], X[idx_j])
            distsum = ml.<span>sum</span>(distj, axis=<span>1</span>)
            icenter = distsum.argmin()
            centers[j] = X[idx_j[<span>0</span>][icenter]]
登录后复制

可以看到 k-medoids 在这个例子上也能得到很好的结果:

漫谈 Clustering (2): k

而且,同 k-means 一样,运气不好的时候也会陷入局部最优解中:

漫谈 Clustering (2): k

如果仔细看上面那段代码的话,就会发现,从 k-means 变到 k-medoids ,时间复杂度陡然增加了许多:在 k-means 中只要求一个平均值 漫谈 Clustering (2): k 即可,而在 k-medoids 中则需要枚举每个点,并求出它到所有其他点的距离之和,复杂度为 漫谈 Clustering (2): k 。

看完了直观的例子,让我们再来看一个稍微实际一点的例子好了:Document Clustering ——那个永恒不变的主题,不过我们这里要做的聚类并不是针对文档的主题,而是针对文档的语言。实验数据是从 Europarl 下载的包含 Danish、German、Greek、English、Spanish、Finnish、French、Italian、Dutch、Portuguese 和 Swedish 这些语言的文本数据集。

在 N-gram-based text categorization 这篇 paper 中描述了一种计算由不同语言写成的文档的相似度的方法。一个(以字符为单位的) N-gram 就相当于长度为 N 的一系列连续子串。例如,由 hello 产生的 3-gram 为:hel、ell 和 llo ,有时候还会在划分 N-gram 之前在开头和末尾加上空格(这里用下划线表示):_he、hel、ell、llo、lo_ 和 o__ 。按照 Zipf’s law :

The nth most common word in a human language text occurs with a frequency inversely proportional to n.

这里我们用 N-gram 来代替 word 。这样,我们从一个文档中可以得到一个 N-gram 的频率分布,按照频率排序一下,只保留频率最高的前 k 个(比如,300)N-gram,我们把叫做一个“Profile”。正常情况下,某一种语言(至少是西方国家的那些类英语的语言)写成的文档,不论主题或长短,通常得出来的 Profile 都差不多,亦即按照出现的频率排序所得到的各个 N-gram 的序号不会变化太大。这是非常好的一个性质:通常我们只要各个语言选取一篇(比较正常的,也不需要很长)文档构建出一个 Profile ,在拿到一篇未知文档的时候,只要和各个 Profile 比较一下,差异最小的那个 Profile 所对应的语言就可以认定是这篇未知文档的语言了——准确率很高,更可贵的是,所需要的训练数据非常少而且容易获得,训练出来的模型也是非常小的。

不过,我们这里且撇开分类(Classification)的问题,回到聚类(Clustering)上,按照前面的说法,在 k-medoids 聚类中,只需要定义好两个东西之间的距离(或者 dissimilarity )就可以了,对于两个 Profile ,它们之间的 dissimilarity 可以很自然地定义为对应的 N-gram 的序号之差的绝对值,在 Python 中用下面这样一个类来表示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
登录后复制
<span><strong>class</strong></span> Profile(<span>object</span>):
    <span><strong>def</strong></span> <span>__init__</span>(<span>self</span>, path, N=<span>3</span>, psize=<span>400</span>):
        <span>self</span>.N = N
        <span>self</span>.psize = psize
        <span>self</span>.build_profile(path)
 
    sep = <span>re</span>.<span>compile</span>(r<span>'<span><strong>\W</strong></span>+'</span>)
    <span><strong>def</strong></span> build_profile(<span>self</span>, path):
        grams = {}
        <span><strong>with</strong></span> <span>open</span>(path) <span><strong>as</strong></span> inf:
            <span><strong>for</strong></span> line <span><strong>in</strong></span> inf:
                <span><strong>for</strong></span> tok <span><strong>in</strong></span> <span>self</span>.sep.split(line):
                    <span><strong>for</strong></span> n <span><strong>in</strong></span> <span>range</span>(<span>self</span>.N):
                        <span>self</span>.feed_ngram(grams, tok, n+<span>1</span>)
        <span>self</span>.create_profile(grams.items())
 
    <span><strong>def</strong></span> create_profile(<span>self</span>, grams):
        <span><em># keep only the top most psize items</em></span>
        grams.sort(key=itemgetter(<span>1</span>), reverse=<span>True</span>)
        grams = grams[:<span>self</span>.psize]
 
        <span>self</span>.<span>profile</span> = <span>dict</span>()
        <span><strong>for</strong></span> i <span><strong>in</strong></span> <span>range</span>(<span>len</span>(grams)):
            <span>self</span>.<span>profile</span>[grams[i][<span>0</span>]] = i
 
    <span><strong>def</strong></span> <span>__getitem__</span>(<span>self</span>, key):
        idx = <span>self</span>.<span>profile</span>.get(key)
        <span><strong>if</strong></span> idx <span><strong>is</strong></span> <span>None</span>:
            <span><strong>return</strong></span> <span>len</span>(<span>self</span>.<span>profile</span>)
        <span><strong>return</strong></span> idx
 
    <span><strong>def</strong></span> dissimilarity(<span>self</span>, o):
        <span>dis</span> = <span>0</span>
        <span><strong>for</strong></span> tok <span><strong>in</strong></span> <span>self</span>.<span>profile</span>.keys():
            <span>dis</span> += <span>abs</span>(<span>self</span>[tok]-o[tok])
        <span><strong>for</strong></span> tok <span><strong>in</strong></span> o.<span>profile</span>.keys():
            <span>dis</span> += <span>abs</span>(<span>self</span>[tok]-o[tok])
        <span><strong>return</strong></span> <span>dis</span>
 
    <span><strong>def</strong></span> feed_ngram(<span>self</span>, grams, tok, n):
        <span><strong>if</strong></span> n <span>!</span>= <span>0</span>:
            tok = <span>'_'</span> + tok
        tok = tok + <span>'_'</span> <span>*</span> (n-<span>1</span>)
        <span><strong>for</strong></span> i <span><strong>in</strong></span> <span>range</span>(<span>len</span>(tok)-n+<span>1</span>):
            gram = tok[i:i+n]
            grams.setdefault(gram, <span>0</span>)
            grams[gram] += <span>1</span>
登录后复制

europarl 数据集共有 11 种语言的文档,每种语言包括大约 600 多个文档。我为这七千多个文档建立了 Profile 并构造出一个 7038×7038 的 dissimilarity matrix ,最后在这上面用 k-medoids 进行聚类。构造 dissimilarity matrix 的过程很慢,在我这里花了将近 10 个小时。相比之下,k-medoids 的过程在内存允许的情况下,采用向量化的方法来做实际上还是很快的,并且通常只要数次迭代就能收敛了。实际的 k-medoids 实现可以在 mltk 中找到,今后如果有时间的话,我会陆续地把一些相关的比较通用的代码放到那里面。

Hungarian algorithm 来求解。

我们这里有 11 种语言,全排列有 11! = 39916800 种情况, 对于每一种排列,我们需要遍历一次 label list ,并数出真正的 label (语言)与聚类得出的结果相同的文档的个数,再除以总的文档个数,得到 accuracy 。假设每次遍历并求出 accuracy 只需要 1 毫秒的时间的话,总共也需要 11 个小时才能得到结果。看上去好像也不是特别恐怖,不过相比起来,用 Hungarian algorithm 的话,我们可以几乎瞬间得到结果。由于文章的篇幅已经很长了,就不在这里介绍具体的算法了,感兴趣的同学可以参考 Wikipedia ,这里我直接使用了一个现有的 Python 实现。

虽然这个实验非常折腾,不过最后的结果其实就是一个数字:accuracy ——在我这里达到了 88.97% ,证明 k-medoids 聚类和 N-gram Profile 识别语言这两种方法都是挺不错的。最后,如果有感兴趣的同学,代码可以从这里下载。需要最新版的 scipy, munkres.py 和 mltk 以及 Python 2.6 。

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

http状态码520是什么意思 http状态码520是什么意思 Oct 13, 2023 pm 03:11 PM

http状态码520是指服务器在处理请求时遇到了一个未知的错误,无法提供更具体的信息。用于表示服务器在处理请求时发生了一个未知的错误,可能是由于服务器配置问题、网络问题或其他未知原因导致的。通常是由服务器配置问题、网络问题、服务器过载或代码错误等原因导致的。如果遇到状态码520错误,最好联系网站管理员或技术支持团队以获取更多的信息和帮助。

如何使用Nginx Proxy Manager实现HTTP到HTTPS的自动跳转 如何使用Nginx Proxy Manager实现HTTP到HTTPS的自动跳转 Sep 26, 2023 am 11:19 AM

如何使用NginxProxyManager实现HTTP到HTTPS的自动跳转随着互联网的发展,越来越多的网站开始采用HTTPS协议来加密传输数据,以提高数据的安全性和用户的隐私保护。由于HTTPS协议需要SSL证书的支持,因此在部署HTTPS协议时需要有一定的技术支持。Nginx是一款强大且常用的HTTP服务器和反向代理服务器,而NginxProxy

http状态码403是什么 http状态码403是什么 Oct 07, 2023 pm 02:04 PM

http状态码403是服务器拒绝了客户端的请求的意思。解决http状态码403的方法是:1、检查身份验证凭据,如果服务器要求身份验证,确保提供正确的凭据;2、检查IP地址限制,如果服务器对IP地址进行了限制,确保客户端的IP地址被列入白名单或未列入黑名单;3、检查文件权限设置,如果403状态码与文件或目录的权限设置有关,确保客户端具有足够的权限访问这些文件或目录等等。

理解网页重定向的常见应用场景并了解HTTP301状态码 理解网页重定向的常见应用场景并了解HTTP301状态码 Feb 18, 2024 pm 08:41 PM

掌握HTTP301状态码的含义:网页重定向的常见应用场景随着互联网的迅猛发展,人们对网页交互的要求也越来越高。在网页设计领域,网页重定向是一种常见且重要的技术,通过HTTP301状态码来实现。本文将探讨HTTP301状态码的含义以及在网页重定向中的常见应用场景。HTTP301状态码是指永久重定向(PermanentRedirect)。当服务器接收到客户端发

快速应用:PHP 异步 HTTP 下载多个文件的实用开发案例分析 快速应用:PHP 异步 HTTP 下载多个文件的实用开发案例分析 Sep 12, 2023 pm 01:15 PM

快速应用:PHP异步HTTP下载多个文件的实用开发案例分析随着互联网的发展,文件下载功能已成为很多网站和应用程序的基本需求之一。而对于需要同时下载多个文件的场景,传统的同步下载方式往往效率低下且耗费时间。为此,使用PHP异步HTTP下载多个文件成为了一种越来越常见的解决方案。本文将通过一个实际的开发案例,详细分析如何使用PHP异步HTTP

使用http.PostForm函数发送带有表单数据的POST请求 使用http.PostForm函数发送带有表单数据的POST请求 Jul 25, 2023 pm 10:51 PM

使用http.PostForm函数发送带有表单数据的POST请求在Go语言的http包中,可以使用http.PostForm函数发送带有表单数据的POST请求。http.PostForm函数的原型如下:funcPostForm(urlstring,dataurl.Values)(resp*http.Response,errerror)其中,u

http请求415错误解决方法 http请求415错误解决方法 Nov 14, 2023 am 10:49 AM

解决方法:1、检查请求头中的Content-Type;2、检查请求体中的数据格式;3、使用适当的编码格式;4、使用适当的请求方法;5、检查服务器端的支持情况。

C#中常见的网络通信和安全性问题及解决方法 C#中常见的网络通信和安全性问题及解决方法 Oct 09, 2023 pm 09:21 PM

C#中常见的网络通信和安全性问题及解决方法在当今互联网时代,网络通信已经成为了软件开发中必不可少的一部分。在C#中,我们通常会遇到一些网络通信的问题,例如数据传输的安全性、网络连接的稳定性等。本文将针对C#中常见的网络通信和安全性问题进行详细讨论,并提供相应的解决方法和代码示例。一、网络通信问题网络连接中断:网络通信过程中,可能会出现网络连接的中断,这会导致

See all articles