首页 数据库 mysql教程 数据挖掘方面重要会议的最佳paper集合

数据挖掘方面重要会议的最佳paper集合

Jun 07, 2016 pm 03:56 PM
数据挖掘 最佳 集合

数据挖掘方面重要会议的最佳paper集合,后续将陆续分析一下内容: 主要有KDD、SIGMOD、VLDB、ICML、SIGIR KDD (Data Mining) 2013 Simple and Deterministic Matrix Sketching Edo Liberty, Yahoo! Research 2012 Searching and Mining Trillions of Time Se

数据挖掘方面重要会议的最佳paper集合,后续将陆续分析一下内容:

主要有KDD、SIGMOD、VLDB、ICML、SIGIR

KDD (Data Mining)

2013

Simple and Deterministic Matrix Sketching

Edo Liberty, Yahoo! Research

2012

Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

Thanawin Rakthanmanon, University of California Riverside; et al.

2011

Leakage in Data Mining: Formulation, Detection, and Avoidance

Shachar Kaufman, Tel-Aviv University; et al.

2010

Large linear classification when data cannot fit in memory

Hsiang-Fu Yu, National Taiwan University; et al.

Connecting the dots between news articles

Dafna Shahaf & Carlos Guestrin, Carnegie Mellon University

2009

Collaborative Filtering with Temporal Dynamics

Yehuda Koren, Yahoo! Research

2008

Fastanova: an efficient algorithm for genome-wide association study

Xiang Zhang, University of North Carolina at Chapel Hill; et al.

2007

Predictive discrete latent factor models for large scale dyadic data

Deepak Agarwal & Srujana Merugu, Yahoo! Research

2006

Training linear SVMs in linear time

Thorsten Joachims, Cornell University

2005

Graphs over time: densification laws, shrinking diameters and possible explanations

Jure Leskovec, Carnegie Mellon University; et al.

2004

A probabilistic framework for semi-supervised clustering

Sugato Basu, University of Texas at Austin; et al.

2003

Maximizing the spread of influence through a social network

David Kempe, Cornell University; et al.

2002

Pattern discovery in sequences under a Markov assumption

Darya Chudova & Padhraic Smyth, University of California Irvine

2001

Robust space transformations for distance-based operations

Edwin M. Knorr, University of British Columbia; et al.

2000

Hancock: a language for extracting signatures from data streams

Corinna Cortes, AT&T Laboratories; et al.

1999

MetaCost: a general method for making classifiers cost-sensitive

Pedro Domingos, Universidade Técnica de Lisboa

1998

Occam's Two Razors: The Sharp and the Blunt

Pedro Domingos, Universidade Técnica de Lisboa

1997

Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Di...

Foster Provost & Tom Fawcett, NYNEX Science and Technology

SIGMOD (Databases)

2013

Massive Graph Triangulation

Xiaocheng Hu, The Chinese University of Hong Kong; et al.

2012

High-Performance Complex Event Processing over XML Streams

Barzan Mozafari, Massachusetts Institute of Technology; et al.

2011

Entangled Queries: Enabling Declarative Data-Driven Coordination

Nitin Gupta, Cornell University; et al.

2010

FAST: fast architecture sensitive tree search on modern CPUs and GPUs

Changkyu Kim, Intel; et al.

2009

Generating example data for dataflow programs

Christopher Olston, Yahoo! Research; et al.

2008

Serializable isolation for snapshot databases

Michael J. Cahill, University of Sydney; et al.

Scalable Network Distance Browsing in Spatial Databases

Hanan Samet, University of Maryland; et al.

2007

Compiling mappings to bridge applications and databases

Sergey Melnik, Microsoft Research; et al.

Scalable Approximate Query Processing with the DBO Engine

Christopher Jermaine, University of Florida; et al.

2006

To search or to crawl?: towards a query optimizer for text-centric tasks

Panagiotis G. Ipeirotis, New York University; et al.

2004

Indexing spatio-temporal trajectories with Chebyshev polynomials

Yuhan Cai & Raymond T. Ng, University of British Columbia

2003

Spreadsheets in RDBMS for OLAP

Andrew Witkowski, Oracle; et al.

2001

Locally adaptive dimensionality reduction for indexing large time series databases

Eamonn Keogh, University of California Irvine; et al.

2000

XMill: an efficient compressor for XML data

Hartmut Liefke, University of Pennsylvania
Dan Suciu, AT&T Laboratories

1999

DynaMat: a dynamic view management system for data warehouses

Yannis Kotidis & Nick Roussopoulos, University of Maryland

1998

Efficient transparent application recovery in client-server information systems

David Lomet & Gerhard Weikum, Microsoft Research

Integrating association rule mining with relational database systems: alternatives and implications

Sunita Sarawagi, IBM Research; et al.

1997

Fast parallel similarity search in multimedia databases

Stefan Berchtold, University of Munich; et al.

1996

Implementing data cubes efficiently

Venky Harinarayan, Stanford University; et al.

VLDB (Databases)

2013

DisC Diversity: Result Diversification based on Dissimilarity and Coverage

Marina Drosou & Evaggelia Pitoura, University of Ioannina

2012

Dense Subgraph Maintenance under Streaming Edge Weight Updates for Real-time Story Identification

Albert Angel, University of Toronto; et al.

2011

RemusDB: Transparent High-Availability for Database Systems

Umar Farooq Minhas, University of Waterloo; et al.

2010

Towards Certain Fixes with Editing Rules and Master Data

Shuai Ma, University of Edinburgh; et al.

2009

A Unified Approach to Ranking in Probabilistic Databases

Jian Li, University of Maryland; et al.

2008

Finding Frequent Items in Data Streams

Graham Cormode & Marios Hadjieleftheriou, AT&T Laboratories

Constrained Physical Design Tuning

Nicolas Bruno & Surajit Chaudhuri, Microsoft Research

2007

Scalable Semantic Web Data Management Using Vertical Partitioning

Daniel J. Abadi, Massachusetts Institute of Technology; et al.

2006

Trustworthy Keyword Search for Regulatory-Compliant Records Retention

Soumyadeb Mitra, University of Illinois at Urbana-Champaign; et al.

2005

Cache-conscious Frequent Pattern Mining on a Modern Processor

Amol Ghoting, Ohio State University; et al.

2004

Model-Driven Data Acquisition in Sensor Networks

Amol Deshpande, University of California Berkeley; et al.

2001

Weaving Relations for Cache Performance

Anastassia Ailamaki, Carnegie Mellon University; et al.

1997

Integrating Reliable Memory in Databases

Wee Teck Ng & Peter M. Chen, University of Michigan

ICML (Machine Learning)

2013

Vanishing Component Analysis

Roi Livni, The Hebrew University of Jerusalum; et al.

Fast Semidifferential-based Submodular Function Optimization

Rishabh Iyer, University of Washington; et al.

2012

Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring

Sungjin Ahn, University of California Irvine; et al.

2011

Computational Rationalization: The Inverse Equilibrium Problem

Kevin Waugh, Carnegie Mellon University; et al.

2010

Hilbert Space Embeddings of Hidden Markov Models

Le Song, Carnegie Mellon University; et al.

2009

Structure preserving embedding

Blake Shaw & Tony Jebara, Columbia University

2008

SVM Optimization: Inverse Dependence on Training Set Size

Shai Shalev-Shwartz & Nathan Srebro, Toyota Technological Institute at Chicago

2007

Information-theoretic metric learning

Jason V. Davis, University of Texas at Austin; et al.

2006

Trading convexity for scalability

Ronan Collobert, NEC Labs America; et al.

2005

A support vector method for multivariate performance measures

Thorsten Joachims, Cornell University

1999

Least-Squares Temporal Difference Learning

Justin A. Boyan, NASA Ames Research Center

SIGIR (Information Retrieval)

2013

Beliefs and Biases in Web Search

Ryen W. White, Microsoft Research

2012

Time-Based Calibration of Effectiveness Measures

Mark Smucker & Charles Clarke, University of Waterloo

2011

Find It If You Can: A Game for Modeling Different Types of Web Search Success Using Interaction Data

Mikhail Ageev, Moscow State University; et al.

2010

Assessing the Scenic Route: Measuring the Value of Search Trails in Web Logs

Ryen W. White, Microsoft Research
Jeff Huang, University of Washington

2009

Sources of evidence for vertical selection

Jaime Arguello, Carnegie Mellon University; et al.

2008

Algorithmic Mediation for Collaborative Exploratory Search

Jeremy Pickens, FX Palo Alto Lab; et al.

2007

Studying the Use of Popular Destinations to Enhance Web Search Interaction

Ryen W. White, Microsoft Research; et al.

2006

Minimal Test Collections for Retrieval Evaluation

Ben Carterette, University of Massachusetts Amherst; et al.

2005

Learning to estimate query difficulty: including applications to missing content detection and dis...

Elad Yom-Tov, IBM Research; et al.

2004

A Formal Study of Information Retrieval Heuristics

Hui Fang, University of Illinois at Urbana-Champaign; et al.

2003

Re-examining the potential effectiveness of interactive query expansion

Ian Ruthven, University of Strathclyde

2002

Novelty and redundancy detection in adaptive filtering

Yi Zhang, Carnegie Mellon University; et al.

2001

Temporal summaries of new topics

James Allan, University of Massachusetts Amherst; et al.

2000

IR evaluation methods for retrieving highly relevant documents

Kalervo J?rvelin & Jaana Kek?l?inen, University of Tampere

1999

Cross-language information retrieval based on parallel texts and automatic mining of parallel text...

Jian-Yun Nie, Université de Montréal; et al.

1998

A theory of term weighting based on exploratory data analysis

Warren R. Greiff, University of Massachusetts Amherst

1997

Feature selection, perceptron learning, and a usability case study for text categorization

Hwee Tou Ng, DSO National Laboratories; et al.

1996

Retrieving spoken documents by combining multiple index sources

Gareth Jones, University of Cambridge; et al.

推荐一个网站,感谢作者的努力搜集,主要是各种顶级会议的最佳论文集合。

http://jeffhuang.com/best_paper_awards.html

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

CS玩家的首选:推荐的电脑配置 CS玩家的首选:推荐的电脑配置 Jan 02, 2024 pm 04:26 PM

1.处理器在选择电脑配置时,处理器是至关重要的组件之一。对于玩CS这样的游戏来说,处理器的性能直接影响游戏的流畅度和反应速度。推荐选择IntelCorei5或i7系列的处理器,因为它们具有强大的多核处理能力和高频率,可以轻松应对CS的高要求。2.显卡显卡是游戏性能的重要因素之一。对于射击游戏如CS而言,显卡的性能直接影响游戏画面的清晰度和流畅度。建议选择NVIDIAGeForceGTX系列或AMDRadeonRX系列的显卡,它们具备出色的图形处理能力和高帧率输出,能够提供更好的游戏体验3.内存电

什么是用于隐马尔可夫模型的最佳Python库? 什么是用于隐马尔可夫模型的最佳Python库? Aug 30, 2023 pm 06:45 PM

隐马尔可夫模型(HMM)是用于对序列数据建模的强大统计模型类型。它们在语音识别、自然语言处理、金融和生物信息学等众多领域都有用途。Python是一种多功能编程语言,提供了一系列用于实施HMM的库。在本文中,我们将发现用于HMM的独特Python库,并评估它们的功能、性能和易用性,迟早会揭示满足您需求的最佳选择。隐马尔可夫模型入门在深入了解这些库之前,让我们简要回顾一下HMM的概念。HMM是一种概率模型,表示系统随时间在隐藏状态之间转换的情况。它由以下部分组成- 一组隐藏状态初始状态概率分布状态转

为何在Go语言中难以实现类似集合的功能? 为何在Go语言中难以实现类似集合的功能? Mar 24, 2024 am 11:57 AM

在Go语言中难以实现类似集合的功能,是一个困扰许多开发者的问题。相比其他编程语言如Python或Java,Go语言并没有内置的集合类型,如set、map等,这给开发者在实现集合功能时带来了一些挑战。首先,让我们来看一下为何在Go语言中难以直接实现类似集合的功能。在Go语言中,最常用的数据结构是slice(切片)和map(映射),它们可以完成类似集合的功能,但

如何优化Java集合排序性能 如何优化Java集合排序性能 Jun 30, 2023 am 10:43 AM

Java是一种功能强大的编程语言,广泛应用于各类软件开发中。在Java开发中,经常会涉及到对集合进行排序的场景。然而,如果不对集合排序进行性能优化,可能会导致程序的执行效率下降。本文将探讨如何优化Java集合排序的性能。一、选择合适的集合类在Java中,有多种集合类可以用来进行排序,如ArrayList、LinkedList、TreeSet等。不同的集合类在

如何使用 Go 语言进行数据挖掘? 如何使用 Go 语言进行数据挖掘? Jun 10, 2023 am 08:39 AM

随着大数据和数据挖掘的兴起,越来越多的编程语言开始支持数据挖掘的功能。Go语言作为一种快速、安全、高效的编程语言,也可以用于数据挖掘。那么,如何使用Go语言进行数据挖掘呢?以下是一些重要的步骤和技术。数据获取首先,你需要获取数据。这可以通过各种途径实现,比如爬取网页上的信息、使用API获取数据、从数据库中读取数据等等。Go语言自带了丰富的HTTP

MySql的数据分析:如何处理数据挖掘和统计 MySql的数据分析:如何处理数据挖掘和统计 Jun 16, 2023 am 11:43 AM

MySql是一款流行的关系型数据库管理系统,广泛应用于企业和个人的数据存储和管理中。除了存储和查询数据外,MySql还提供了一些功能,如数据分析、数据挖掘和统计,可以帮助用户更好地理解和利用数据。数据在任何企业或组织中都是宝贵的资产,通过数据分析可以帮助企业做出正确的业务决策。MySql可以通过多种方式进行数据分析和数据挖掘,以下是一些实用的技术和工具:使用

Python中的时间序列预测技巧 Python中的时间序列预测技巧 Jun 10, 2023 am 08:10 AM

随着数据时代的到来,越来越多的数据被收集并用于分析和预测。时间序列数据是一种常见的数据类型,它包含了基于时间的一连串数据。用于预测这类数据的方法被称为时间序列预测技术。Python是一种十分流行的编程语言,拥有强大的数据科学和机器学习支持,因此它也是一种非常适合进行时间序列预测的工具。本文将介绍Python中一些常用的时间序列预测技巧,并提供一些在实际项目中

Laravel 集合中的 Where 方法实用指南 Laravel 集合中的 Where 方法实用指南 Mar 10, 2024 pm 04:36 PM

Laravel集合中的Where方法实用指南在Laravel框架的开发过程中,集合(Collection)是一个非常有用的数据结构,它提供了丰富的方法来操作数据。其中,Where方法是一个常用的筛选方法,能够根据指定条件来过滤集合中的元素。本文将介绍Laravel集合中Where方法的使用,通过具体的代码示例来演示其用法。1.基本用法Where方法的

See all articles