数据持久化编程学习总结
一、JDBC编程 1. 使用JDBC规范 在数据库编程方面,最先使用的数据持久化技术无疑是JDBC 可以说JDBC(Java Data Base Connectivity)是学习其它数据持久化技术的基础 Java中访问数据库使用的就是JDBC,基本操作有CRUD(Create-Read-Update-Delete) JDBC定义
一、JDBC编程
1. 使用JDBC规范
在数据库编程方面,最先使用的数据持久化技术无疑是JDBC
可以说JDBC(Java Data Base Connectivity)是学习其它数据持久化技术的基础
Java中访问数据库使用的就是JDBC,基本操作有CRUD(Create-Read-Update-Delete)
JDBC定义了数据库的连接,SQL语句的执行以及查询结果集的遍历,一般操作步骤如下:
1. 注册驱动:DriverManager.registerDriver(driver);
2. 建立连接:Connection conn = DriverManager.getConnection(url, "username","password");
3. 获取对象:Statement stmt = conn.createStatement();
4. 执行查询:ResultSet rs = stmt.executeQuery(sqlstring);
5. 处理结果:while (rs.next()){doing something about the result}
6. 释放连接:rs.close(); stmt.close();conn.close();
总结:在初学阶段,无疑是必须学会使用原生态的JDBC进行数据库编程
优点:JDBC为数据库编程提供了可能,规范了数据库的连接和操作方式
缺点:JDBC API和SQL语句与Servlet和JSP夹杂在一起
每次进行数据库操作都要进行对象的创建与销毁
二、JDBC高级应用
1. 使用DAO模式
大量进行JDBC编程后,就积累了不少经验和发现不少缺点,于是对JDBC进行分层和模块化
而DAO(Data Access Object)和POJO(Plain Old Java Object)则是JDBC下常用的模式
在DAO模式出现之前,操作数据库的代码与业务代码均出现在Servlet或者JSP中
SQL语句、Java语句和Html语句夹杂在一起了,导致开发效率很底下
而使用了DAO模式后,所有的JDBC API和SQL语句均移到了DAO层
实现分层后Servlet、JSP只与Java Bean、DAO层交互,而不会有JDBC API和SQL语句
这无疑增加了程序的清晰性、可读性,而且其可重用性比较好
2. 使用DBCP
在JDBC编程中,每一次的数据操作,都要创建并销毁conn对象、stmt对象和rs对象
繁琐的创建和销毁这些对象无疑会消耗一定的时间和IO资源,在并发访问时尤其明显
使用数据源DBCP(DataBase connection pool)技术可以解决这一问题
数据源一般配置在xml文件中,使用数据源会自动进行优化和管理,一般配置如下:
<property name="driverClassName" value="driverClassName"></property> <property name="url" value="jdbc url"></property> <property name="username" value="username"></property> <property name="password" value="password"></property>
总结:DAO模式解决了JDBC API和SQL语句与JSP的夹杂问题并实现了分层
DBCP则为繁琐的创建和销毁对象提供了解决方法
三、使用ORM框架Hibernate进行数据库编程
1. ORM框架的基本原理
DAO模式无非就是手动将POJO拆分并拼装成SQL语句和将SQL查询结果拼装回POJO
在使用了JDBC高级技术和DAO模式进行编程后,仍然需要编写大量的SQL语句
而ORM通过xml配置文件或使用Java注解的方式把Java对象映射到数据库上
这样ORM(Object-Relative Database-Mapping)框架就能自动生成SQL语句
2. 使用ORM框架Hibernate进行数据库编程
Hibernete是ORM框架的一种,同样能够自动生成SQL语句
在DAO模式中,一个简单的Person POJO如下(省略getter和setter方法):
public class Person { private Integer id; private String name; }
对应于数据库的表person
create table if not exists person ( id int primary key auto_increment, name varchar(20) not null, );
使用Java注解后Person POJO实体类能映射到数据库上,并能自动生成SQL语句
代码如下(省略getter和setter方法):
@Entity @Table(name = "person") public class Person{ @Id @GeneratedValue(strategy= IDENTITY) private Integer id; @Column(name = "name") private String name; }
Hibernate使用Session和HQL语句进行数据库的相关操作,如查询数据的操作如下:
Session session =HibernateSessionFactory.getSessionFactory().openSession(); String queryString = "select p.id,p.name from Person p"; //查询并输出所有的记录 List<Object[]> personList =session.createQuery(queryString).list(); for(Object[] row : personList){ for(Object obj : row) System.out.print(" " + obj); System.out.println(); } session.close();
总结:ORM这类的框架解决了DAO层需要编写大量的SQL语句的问题
Hibernate使用HQL解决了数据库的移植问题
优点:无需再编写大量的SQL语句并解决了数据库移植问题
缺点:在数据库事务操作上然后要编写较多的代码
四、使用JPA规范进行数据库编程
1. 使用JPA规范
由于人们使用各种不同的数据库如Oracle、DB2、MySQL和SQL Server等进行数据存储
所以进行数据库连接的方式必然多种多样,而JDBC则规范了数据库的连接方式
同样的道理,各种ORM框架的出现必然会使开发和维护的难度升级
所以Java官方又推出了JPA规范,旨在规范各种ORM框架,使其有统一的接口和方法
使用JPA规范进行数据库编程只需指定一种ORM框架作为底层的实现,如Hibernate
如果需要更换其它的ORM框架则只需在配置文件中修改,类似于更换其它的数据库
而JPA规范则使用EntityManager进行相关的数据库操作,如查找操作如下:
public boolean findPersonByName(String name) { EntityManagerFactory emf = Persistence.createEntityManagerFactory("persistence-unitname"); EntityManager em = emf.createEntityManager(); Person person = em. findPersonByName(name); if (a == null) return false; return true; }
总结:JPA需要指定一种ORM框架作为底层的实现
JPA也是使用Java注解配置POJO,使用EntityManager进行相关的数据库操作
优点:JPA规范旨在规范各种ORM框架,使其有统一的接口和方法
缺点:仍然需要对事务管理进行编程
五、使用SpringDAO进行数据库编程
SpringDAO对JDBC进行了封装,结合DAO模式进行使用
SpringDAO规范使用JDBCTemplate进行相关的数据库操作,如查找操作如下:
public int getPersonCount(){ String sql = "select count(*) from person"; return getJdbcTemplate().queryForInt(sql); }
总结:SpringDAO对JDBC进行了封装,隐藏了JDBC API,只需使用getJdbcTemplate()方法
类似于使用DAO模式,只是封装了JDBC和提供了事务管理
优点:能够通过使用Spring进行事务管理
隐藏和封装了JDBCAPI
缺点: 类似于使用DAO模式,仍然需要编写和使用大量的SQL语句
六、使用SpringORM进行数据库编程
SpringORM就是为了解决SpringDAO的缺点,让其完善起来
这样一来,SpringORM就有了所有的优点,包括能够使用DAO模式进行分层
能够使用ORM框架解决编写大量的SQL语句的问题
隐藏和封装了JDBC API,只需使用getHibernateTemplate()方法
能够使用HQL解决数据库的移植问题,并且通过使用Spring进行事务管理
总结:使用SpringORM进行数据持久化编程是相对比较理想的
补充:使用SSH框架进行Java Web编程能够做到合理分层
能将业务逻辑、数据持久化和表现逻辑明确分开,思路清晰
表现逻辑层中的Struts2是MVC框架,能够进行页面导航和实现视图显示
在结构上表现为使用action进行页面导航,使用JSP作为视图界面
数据持久层中的Hibernate则是持久化ORM框架,能够自动生成SQL语句
在结构上表现为使用DAO和POJO(domain)实现数据持久化
业务逻辑层的Spring则能使用简单的封装好的JDBC进行CRUD和事务管理
在结构上表现为使用service进行业务管理

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

70B模型,秒出1000token,换算成字符接近4000!研究人员将Llama3进行了微调并引入加速算法,和原生版本相比,速度足足快出了快了13倍!不仅是快,在代码重写任务上的表现甚至超越了GPT-4o。这项成果,来自爆火的AI编程神器Cursor背后团队anysphere,OpenAI也参与过投资。要知道在以快着称的推理加速框架Groq上,70BLlama3的推理速度也不过每秒300多token。 Cursor这样的速度,可以说是实现了近乎即时的完整代码文件编辑。有人直呼好家伙,如果把Curs

堂堂开源之王Llama3,原版上下文窗口居然只有……8k,让到嘴边的一句“真香”又咽回去了。在32k起步,100k寻常的今天,这是故意要给开源社区留做贡献的空间吗?开源社区当然不会放过这个机会:现在只需58行代码,任何Llama370b的微调版本都能自动扩展到1048k(一百万)上下文。背后是一个LoRA,从扩展好上下文的Llama370BInstruct微调版本中提取出来,文件只有800mb。接下来使用Mergekit,就可以与其他同架构模型一起运行或直接合并到模型中。所使用的1048k上下文
