目录
3. prefetch_related()
作用和方法
使用方法
*lookups 参数
Prefetch 对象
None
小结
首页 数据库 mysql教程 实例详解Django的select_related和prefetch_related函数对QueryS

实例详解Django的select_related和prefetch_related函数对QueryS

Jun 07, 2016 pm 03:59 PM
django pr select 实例 详解

这是本系列的第二篇,内容是 prefetch_related() 函数的用途、实现途径、以及使用方法。 本系列的第一篇在这里 3. prefetch_related() 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。或许你会说,没有一个叫OneToM

这是本系列的第二篇,内容是 prefetch_related() 函数的用途、实现途径、以及使用方法。

本系列的第一篇在这里

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。或许你会说,没有一个叫OneToManyField的东西啊。实际上 ,ForeignKey就是一个多对一的字段,而被ForeignKey关联的字段就是一对多字段了。

作用和方法

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。继续以上边的例子进行说明,如果我们要获得张三所有去过的城市,使用prefetch_related()应该是这么做:

>>> zhangs = Person.objects.prefetch_related('visitation').get(firstname=u"张",lastname=u"三")
>>> for city in zhangs.visitation.all() :
...   print city
...
登录后复制
上述代码触发的SQL查询如下:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
FROM `QSOptimize_person` 
WHERE (`QSOptimize_person`.`lastname` = '三'  AND `QSOptimize_person`.`firstname` = '张'); 

SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, 
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
登录后复制

第一条SQL查询仅仅是获取张三的Person对象,第二条比较关键,它选取关系表`QSOptimize_person_visitation`中`person_id`为张三的行,然后和`city`表内联(INNER JOIN 也叫等值连接)得到结果表。

+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
|  1 | 张        | 三       |           3 |         1 |
+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)

+-----------------------+----+-----------+-------------+
| _prefetch_related_val | id | name      | province_id |
+-----------------------+----+-----------+-------------+
|                     1 |  1 | 武汉市    |           1 |
|                     1 |  2 | 广州市    |           2 |
|                     1 |  3 | 十堰市    |           1 |
+-----------------------+----+-----------+-------------+
3 rows in set (0.00 sec)
登录后复制
显然张三武汉、广州、十堰都去过。

又或者,我们要获得湖北的所有城市名,可以这样:

>>> hb = Province.objects.prefetch_related('city_set').get(name__iexact=u"湖北省")
>>> for city in hb.city_set.all():
...   city.name
...
登录后复制

触发的SQL查询:

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` 
FROM `QSOptimize_province` 
WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
WHERE `QSOptimize_city`.`province_id` IN (1);
登录后复制
得到的表:
+----+-----------+
| id | name      |
+----+-----------+
|  1 | 湖北省    |
+----+-----------+
1 row in set (0.00 sec)

+----+-----------+-------------+
| id | name      | province_id |
+----+-----------+-------------+
|  1 | 武汉市    |           1 |
|  3 | 十堰市    |           1 |
+----+-----------+-------------+
2 rows in set (0.00 sec)
登录后复制

我们可以看见,prefetch使用的是 IN 语句实现的。这样,在QuerySet中的对象数量过多的时候,根据数据库特性的不同有可能造成性能问题。

使用方法

*lookups 参数

prefetch_related()在Django < 1.7 只有这一种用法。和select_related()一样,prefetch_related()也支持深度查询,例如要获得所有姓张的人去过的省:

>>> zhangs = Person.objects.prefetch_related(&#39;visitation__province&#39;).filter(firstname__iexact=u&#39;张&#39;)
>>> for i in zhangs:
...   for city in i.visitation.all():
...     print city.province
...
登录后复制
触发的SQL:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, 
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
FROM `QSOptimize_person` 
WHERE `QSOptimize_person`.`firstname` LIKE &#39;张&#39; ;

SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 4);

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` 
FROM `QSOptimize_province` 
WHERE `QSOptimize_province`.`id` IN (1, 2);
登录后复制
获得的结果:
+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
|  1 | 张        | 三       |           3 |         1 |
|  4 | 张        | 六       |           2 |         2 |
+----+-----------+----------+-------------+-----------+
2 rows in set (0.00 sec)

+-----------------------+----+-----------+-------------+
| _prefetch_related_val | id | name      | province_id |
+-----------------------+----+-----------+-------------+
|                     1 |  1 | 武汉市    |           1 |
|                     1 |  2 | 广州市    |           2 |
|                     4 |  2 | 广州市    |           2 |
|                     1 |  3 | 十堰市    |           1 |
+-----------------------+----+-----------+-------------+
4 rows in set (0.00 sec)

+----+-----------+
| id | name      |
+----+-----------+
|  1 | 湖北省    |
|  2 | 广东省    |
+----+-----------+
2 rows in set (0.00 sec)
登录后复制

值得一提的是,链式prefetch_related会将这些查询添加起来,就像1.7中的select_related那样。

要注意的是,在使用QuerySet的时候,一旦在链式操作中改变了数据库请求,之前用prefetch_related缓存的数据将会被忽略掉。这会导致Django重新请求数据库来获得相应的数据,从而造成性能问题。这里提到的改变数据库请求指各种filter()、exclude()等等最终会改变SQL代码的操作。而all()并不会改变最终的数据库请求,因此是不会导致重新请求数据库的。

举个例子,要获取所有人访问过的城市中带有“市”字的城市,这样做会导致大量的SQL查询:

plist = Person.objects.prefetch_related(&#39;visitation&#39;)
[p.visitation.filter(name__icontains=u"市") for p in plist]
登录后复制
因为数据库中有4人,导致了2+4次SQL查询:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, 
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
FROM `QSOptimize_person`;

SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 2, 3, 4);

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE(`QSOptimize_person_visitation`.`person_id` = 1  AND `QSOptimize_city`.`name` LIKE &#39;%市%&#39; );

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE (`QSOptimize_person_visitation`.`person_id` = 2  AND `QSOptimize_city`.`name` LIKE &#39;%市%&#39; ); 

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE (`QSOptimize_person_visitation`.`person_id` = 3  AND `QSOptimize_city`.`name` LIKE &#39;%市%&#39; );

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE (`QSOptimize_person_visitation`.`person_id` = 4  AND `QSOptimize_city`.`name` LIKE &#39;%市%&#39; );

详细分析一下这些请求事件。
登录后复制

众所周知,QuerySet是lazy的,要用的时候才会去访问数据库。运行到第二行Python代码时,for循环将plist看做iterator,这会触发数据库查询。最初的两次SQL查询就是prefetch_related导致的。

虽然已经查询结果中包含所有所需的city的信息,但因为在循环体中对Person.visitation进行了filter操作,这显然改变了数据库请求。因此这些操作会忽略掉之前缓存到的数据,重新进行SQL查询。

但是如果有这样的需求了应该怎么办呢?在Django >= 1.7,可以通过下一节的Prefetch对象来实现,如果你的环境是Django < 1.7,可以在Python中完成这部分操作。

plist = Person.objects.prefetch_related(&#39;visitation&#39;)
[[city for city in p.visitation.all() if u"市" in city.name] for p in plist]
登录后复制
Prefetch 对象

在Django >= 1.7,可以用Prefetch对象来控制prefetch_related函数的行为。

注:由于我没有安装1.7版本的Django环境,本节内容是参考Django文档写的,没有进行实际的测试。

Prefetch对象的特征:

一个Prefetch对象只能指定一项prefetch操作。 Prefetch对象对字段指定的方式和prefetch_related中的参数相同,都是通过双下划线连接的字段名完成的。 可以通过 queryset 参数手动指定prefetch使用的QuerySet。 可以通过 to_attr 参数指定prefetch到的属性名。 Prefetch对象和字符串形式指定的lookups参数可以混用。

继续上面的例子,获取所有人访问过的城市中带有“武”字和“州”的城市:

wus = City.objects.filter(name__icontains = u"武")
zhous = City.objects.filter(name__icontains = u"州")
plist = Person.objects.prefetch_related(
    Prefetch(&#39;visitation&#39;, queryset = wus, to_attr = "wu_city"),
    Prefetch(&#39;visitation&#39;, queryset = zhous, to_attr = "zhou_city"),)
[p.wu_city for p in plist]
[p.zhou_city for p in plist]
登录后复制

注:这段代码没有在实际环境中测试过,若有不正确的地方请指正。

顺带一提,Prefetch对象和字符串参数可以混用。

None

可以通过传入一个None来清空之前的prefetch_related。就像这样:

>>> prefetch_cleared_qset = qset.prefetch_related(None)
登录后复制

小结

prefetch_related主要针一对多和多对多关系进行优化。prefetch_related通过分别获取各个表的内容,然后用Python处理他们之间的关系来进行优化。可以通过可变长参数指定需要select_related的字段名。指定方式和特征与select_related是相同的。在Django >= 1.7可以通过Prefetch对象来实现复杂查询,但低版本的Django好像只能自己实现。作为prefetch_related的参数,Prefetch对象和字符串可以混用。prefetch_related的链式调用会将对应的prefetch添加进去,而非替换,似乎没有基于不同版本上区别。可以通过传入None来清空之前的prefetch_related。
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Win11管理员权限获取详解 Win11管理员权限获取详解 Mar 08, 2024 pm 03:06 PM

Windows操作系统是全球最流行的操作系统之一,其新版本Win11备受瞩目。在Win11系统中,管理员权限的获取是一个重要的操作,管理员权限可以让用户对系统进行更多的操作和设置。本文将详细介绍在Win11系统中如何获取管理员权限,以及如何有效地管理权限。在Win11系统中,管理员权限分为本地管理员和域管理员两种。本地管理员是指具有对本地计算机的完全管理权限

Oracle SQL中的除法运算详解 Oracle SQL中的除法运算详解 Mar 10, 2024 am 09:51 AM

OracleSQL中的除法运算详解在OracleSQL中,除法运算是一种常见且重要的数学运算操作,用于计算两个数相除的结果。除法在数据库查询中经常用到,因此了解OracleSQL中的除法运算及其用法是数据库开发人员必备的技能之一。本文将详细讨论OracleSQL中除法运算的相关知识,并提供具体的代码示例供读者参考。一、OracleSQL中的除法运算

PHP模运算符的作用及用法详解 PHP模运算符的作用及用法详解 Mar 19, 2024 pm 04:33 PM

PHP中的模运算符(%)是用来获取两个数值相除的余数的。在本文中,我们将详细讨论模运算符的作用及用法,并提供具体的代码示例来帮助读者更好地理解。1.模运算符的作用在数学中,当我们将一个整数除以另一个整数时,会得到一个商和一个余数。例如,当我们将10除以3时,商为3,余数为1。模运算符就是用来获取这个余数的。2.模运算符的用法在PHP中,使用%符号来表示模

linux系统调用system()函数详解 linux系统调用system()函数详解 Feb 22, 2024 pm 08:21 PM

Linux系统调用system()函数详解系统调用是Linux操作系统中非常重要的一部分,它提供了一种与系统内核进行交互的方式。其中,system()函数是一个常用的系统调用函数之一。本文将详细介绍system()函数的使用方法,并提供相应的代码示例。系统调用的基本概念系统调用是用户程序与操作系统内核交互的一种方式。用户程序通过调用系统调用函数来请求操作系统

Linux的curl命令详解 Linux的curl命令详解 Feb 21, 2024 pm 10:33 PM

Linux的curl命令详解摘要:curl是一种强大的命令行工具,用于与服务器进行数据通信。本文将介绍curl命令的基本用法,并提供实际的代码示例,帮助读者更好地理解和应用该命令。一、curl是什么?curl是一个命令行工具,用于发送和接收各种网络请求。它支持多种协议,如HTTP、FTP、TELNET等,并提供了丰富的功能,如文件上传、文件下载、数据传输、代

在PyCharm中怎样使用Django框架创建项目 在PyCharm中怎样使用Django框架创建项目 Feb 19, 2024 am 08:56 AM

如何在PyCharm中利用Django框架创建项目的技巧,需要具体代码示例Django是一款功能强大的PythonWeb框架,它提供了一系列用于快速开发Web应用程序的工具和功能。而PyCharm则是Python开发的一款集成开发环境(IDE),提供了一系列方便的功能和工具来增加开发效率。结合Django和PyCharm,在创建项目方面,可以更加快速、方便

深入了解Promise.resolve() 深入了解Promise.resolve() Feb 18, 2024 pm 07:13 PM

Promise.resolve()详解,需要具体代码示例Promise是JavaScript中一种用于处理异步操作的机制。在实际开发中,经常需要处理一些需要按顺序执行的异步任务,而Promise.resolve()方法就是用来返回一个已经Fulfilled状态的Promise对象。Promise.resolve()是Promise类的一个静态方法,它接受一个

jQuery中如何实现select元素的改变事件绑定 jQuery中如何实现select元素的改变事件绑定 Feb 23, 2024 pm 01:12 PM

jQuery是一个流行的JavaScript库,可以用来简化DOM操作、事件处理、动画效果等。在web开发中,经常会遇到需要对select元素进行改变事件绑定的情况。本文将介绍如何使用jQuery实现对select元素改变事件的绑定,并提供具体的代码示例。首先,我们需要使用标签来创建一个包含选项的下拉菜单:

See all articles