首页 数据库 mysql教程 腾讯数十亿广告的秘密武器:利用大数据实时精准推荐

腾讯数十亿广告的秘密武器:利用大数据实时精准推荐

Jun 07, 2016 pm 04:04 PM
使用 实时 广告 推荐 数据 武器 秘密 精准 腾讯

在过去几年,你在腾讯做了什么来推动大数据的应用? 过去三年,我一直在坚持一件事:推动大数据的实时应用。现在从国外数据中心的数据,一秒钟可以达到深圳数据中心,这就是腾讯具备的数据能力。有了这个能力,就可以做很多商业化行为的模式。 目前腾讯收集

在过去几年,你在腾讯做了什么来推动大数据的应用?

过去三年,我一直在坚持一件事:推动大数据的实时应用。现在从国外数据中心的数据,一秒钟可以达到深圳数据中心,这就是腾讯具备的数据能力。有了这个能力,就可以做很多商业化行为的模式。

腾讯数十亿广告的秘密武器:利用大数据实时精准推荐

目前腾讯收集的数据已经超过了1万亿条, 计算机规模已经超过了8千8百台。这么庞大的数据如果能实时处理,就能发挥出巨大的商业价值。这个商业价值就是精准推荐。

每年腾讯几十亿的广告,其基础来自于数据的精准推荐。实时数据推荐还可以用于视频的推荐,腾讯音乐推荐,新闻客户端的推荐,游戏道具的推荐,等等。

目前我们做到从数据进来到投放数据,延时不会超过50毫秒。有这个技术基础,腾讯的精准推荐才有了基础。

从内部管理而言,实时也降低了成本。因为实时数据处理可以用足“每一秒”。传统的数据仓库一般从晚上零点到第二天早上八点,做数据截断、抽取和处理,因为早上九点老板就要看数据报告了。数据处理的时间只有一天之中的三分之一,其他时间都是空闲的。

当我们把数据做到实时处理的事后,实际意义是将分析时间成本分摊到全天,成本更低。同时这也有利于控制风险,因为只要一出错马上可以监控,迅速回滚。

腾讯数十亿广告的秘密武器:利用大数据实时精准推荐

所以你将大部分精力放在了“实时”上,你为什么认定“实时”会为腾讯增加更多的商业价值?

数据首先是有时效性的,一秒钟前的行为和一秒钟后的行为有着天差地别。

以往我们通过统计数据,得出规律,找到用户喜好。而现在实时变得更为重要。前一秒你看了母婴内容,那么几秒内就应该推送相关广告,转化率会比较高。如果你还在推送几天前,这个用户看足球的数据信息,这个生意就很难做下去了。

在腾讯,我们分三个领域各自研究精准推荐:数据整理、实时计算、算法研究。我深知,实时计算是关键核心。

在我的脑海中,一切数据必须以消息为中心,实时处理、提炼瓜分。实在解决不了的数据,再做离线分析。

比如一张照片,在数据处理端口肯定首先被实时过滤,这张照片是在哪里拍的?其中几个人,通过什么方式拍摄的?在所有数据收集处理完之后,我可能还需要找这张图片与其他图片的关联关系,这时才会做离线处理。

腾讯基本上90%以上的数据都是在线实时处理。我一直在坚持将腾讯的数据集中起来,放在一个平台体系之下,这其实是来自阿里巴巴的教训。(蒋杰原来在支付宝数据部门工作)阿里巴巴的数据直到今天还是四分五裂。

其实,我对于数据的实时经验也是在支付宝时期积累的。当时我学到的一点是,如果没有搜索引擎的支撑,就根本无法做数据分析。当时很多人都说,没有办法让数据在6秒内被搜索出来,而我坚持认为可以达到。

实际上,现在在腾讯,一万五千个字段,在3秒之内所有的数据交叉都可以实现。这是一个做技术的本分。

在实时这个领域,技术上的难点是什么?

我一直在慢慢弱化数据仓库,逐步走向实时数据仓库。其中最大的问题是,如何实现数据实时获取?

数据实时处理的前提,首先是实时采集。我的办法是一方面和业务部门谈好,另一方面我将数据采集文件部署到所有的机器里,从安装操作系统的时候就写入数据采集文件。这样,腾讯所有40万台机器都可以协同操作。

过去两年,腾讯从原来的一小时响应,到现在一秒钟精准推送,CTR (点击率)能提升20%。规模越大效果越明显。

精准推荐有三大要素,第一是数据,第二是实时,第三是算法。

首先要有强大的数据,如果数据缺失什么都干不了;第二,效果明显的是实时,第三才是优化算法。这是整个精准推荐体系的核心。实时在其中排在第二,我们的实践证明, 在什么都没变的情况下,频率改变带来了整体收入的提升。

腾讯数十亿广告的秘密武器:利用大数据实时精准推荐

在解决了获取数据之后,数据底层所遭遇的最大困难是什么?

眼下的挑战在于深度学习。大数据时代,腾讯有200PB的图片数据,如何去挖掘图片数据的价值?如何去挖掘语音数据的价值?

我们正在做的是从结构化数据分析转向非结构化数据。如何从非结构化数据中提炼商业价值?这包括了深度学习的DNN和CNN技术,包括如何做文本之间相似度的关系。这都是需要突破的点。

微信所有的语音训练都是深度学习的办法来处理。比如,每当你在用微信放语音的时候,机器自动翻译成文字,就是靠深度学习网络来训练的。但目前,计算能力依然是一个门槛,这个能力并非我们想象这么轻松,需要更多计算技术来改进。

未来数据处理会有剧烈的改变么?

硬件决定了数据的能效。数据规模越大,数据展现的方式会越多,未来实时计算的处理需求会越来越旺盛。相信未来,能贴合更多应用场景的高效计算引擎会出现,这是我对未来的判断。

很明显的是,如果当前一秒的数据没有处理完整,提炼清楚,随后的分析成本就会越来越高,而数据的价值则越来越低。所以,在未来,高效计算引擎和存储引擎的出现,会对大数据发展有突飞猛进的效用。

后记:

在蒋杰看来,没什么比实时更重要。在腾讯,他敏感意识到实时数据对于广告的价值,所以把大部分精力放到实时处理数据以及如何优化广告投放上。

今天很多公司的数据仓库是离线的,也因此数据距离实际业务很遥远,这个距离不仅仅是无法实时反应,更多在于无法保证数据的稳定和质量。

以此而言,数据实时化是业务与数据的结合的关键。

但实时数据并非终点。

每秒都在生产新数据,新数据与既有数据之间的关系如何梳理?假如我们一直通过数据收集、分析得知,电脑前坐着的是一只狗,但假如某天的数据收集显示,它会猫叫。那么我们能判断电脑前的其实是一只猫么?

这不仅仅是数据更新变化这么简单,而关系到我们如何判断和分析。

所以,此时,延时判断变得很重要。

如何在庞大数据面前,做出延时判断?尽管你有实时数据分析的能力。

这可能是下一个更有趣的话题。

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1425
52
Laravel 教程
1327
25
PHP教程
1273
29
C# 教程
1253
24
大模型App腾讯元宝上线!混元再升级,打造可随身携带的全能AI助理 大模型App腾讯元宝上线!混元再升级,打造可随身携带的全能AI助理 Jun 09, 2024 pm 10:38 PM

5月30日,腾讯宣布旗下混元大模型全面升级,基于混元大模型的App“腾讯元宝”正式上线,苹果及安卓应用商店均可下载。相比此前测试阶段的混元小程序版本,面向工作效率场景,腾讯元宝提供了AI搜索、AI总结、AI写作等核心能力;面向日常生活场景,元宝的玩法也更加丰富,提供了多个特色AI应用,并新增了创建个人智能体等玩法。“腾讯做大模型不争一时之先。”腾讯云副总裁、腾讯混元大模型负责人刘煜宏表示:“过去的一年,我们持续推进腾讯混元大模型的能力爬坡,在丰富、海量的业务场景中打磨技术,同时洞察用户的真实需求

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

阿里7B多模态文档理解大模型拿下新SOTA 阿里7B多模态文档理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模态文档理解能力新SOTA!阿里mPLUG团队发布最新开源工作mPLUG-DocOwl1.5,针对高分辨率图片文字识别、通用文档结构理解、指令遵循、外部知识引入四大挑战,提出了一系列解决方案。话不多说,先来看效果。复杂结构的图表一键识别转换为Markdown格式:不同样式的图表都可以:更细节的文字识别和定位也能轻松搞定:还能对文档理解给出详细解释:要知道,“文档理解”目前是大语言模型实现落地的一个重要场景,市面上有很多辅助文档阅读的产品,有的主要通过OCR系统进行文字识别,配合LLM进行文字理

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 Apr 29, 2024 pm 04:55 PM

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

See all articles