生产上数据库大量的latchfree导致的CPU资源耗尽的问题的解决
中午的时候,我们生产上的某个数据库,cpu一直居高不下 通过如下的sql语句,我们查看当时数据库的等待,争用的情况: select s.SID, s.SERIAL#, kill -9 || p.SPID, s.MACHINE, s.OSUSER, s.PROGRAM, s.USERNAME, s.last_call_et, a.SQL_ID, s.LOGON_TIME, a
中午的时候,我们生产上的某个数据库,cpu一直居高不下
通过如下的sql语句,我们查看当时数据库的等待,争用的情况:
select s.SID, s.SERIAL#, 'kill -9 ' || p.SPID, s.MACHINE, s.OSUSER, s.PROGRAM, s.USERNAME, s.last_call_et, a.SQL_ID, s.LOGON_TIME, a.SQL_TEXT, a.SQL_FULLTEXT, w.EVENT, a.DISK_READS, a.BUFFER_GETS from v$process p, v$session s, v$sqlarea a, v$session_wait w where p.ADDR = s.PADDR and s.SQL_ID = a.sql_id and s.sid = w.SID and s.STATUS = 'ACTIVE' order by s.last_call_et desc;
从event可以看到,是latch 的争用导致的原因
通过如果的sql,查看是什么样的latch
select * from v$session_wait where event like 'latch free';
P2就是 这个latch的name,通过v$latchname这个视图就可以知道哪个具体的latch
1:45:55 PM SQL> select * from v$latchname where latch#=164; LATCH# NAME HASH ---------- ---------------------------------------------------------------- ---------- 164 simulator hash latch 2233208730
查看latch的历史情况
2:11:59 PM SQL> select name,gets,misses,sleeps from v$latch where sleeps >0 order by sleeps desc; NAME GETS MISSES SLEEPS ---------------------------------------------------------------- ---------- ---------- ---------- simulator hash latch 4827860212 135426899 10890947 cache buffers chains 1619822817 2850976006 4747728 gc element 4660052091 25748270 175073 resmgr:schema config 91872524 153968 95708 ges resource hash list 174151449 1070556 55459 Real-time plan statistics latch 40953155 651496 44527 call allocation 3301878 265908 43501 row cache objects 336300485 4970324 19366
这个simulator hash latch已经是显著的latch部分
eagle在他的网站上有篇文章讲到了关于simulator这个
http://www.eygle.com/archives/2011/11/simulator_lru_latch.html
simulator意为模拟,也就是说当Oracle在内存中进行数据块处理时,实际上还会在预先分配的Buffer中进行相关信息记录,如DBA信息,当数据块被老化之后,下次读取时,如果请求的数据在Simulator内存中存在,则认为继续缓存该数据块是有意义的,通过监控并模拟统计这些操作,并对计算结果加权运算,就可以实现对于内存的调整建议。
在模拟过程中,也是通过Latch来实现的,相关的Latch就有 simulator lru latch 、 simulator hash latch等.
就Buffer Cache而言,如果系统中该类争用严重,则可以考虑关闭db_cache_advice,消除这部分内部操作对于性能的影响。
以下是一个相关BUG,在该Bug中,由于DB_CACHE_ADVICE的开启导致了严重的simulator lru latch的竞争:
Bug 5918642 Heavy latch contention with DB_CACHE_ADVICE on
This note gives a brief overview of bug 5918642.
The content was last updated on: 01-APR-2008
Click here for details of each of the sections below.
Affects:
Product (Component) Oracle Server (Rdbms) Range of versions believed to be affected Versions < 11.2 Versions confirmed as being affected
- 10.2.0.3
Platforms affected Generic (all / most platforms affected) Fixed:
This issue is fixed in
- 11.2 (Future Release)
- 10.2.0.4 (Server Patch Set)
- 11.1.0.7 (Server Patch Set)
Symptoms:
Related To:
- Latch Contention
- Waits for "latch free"
- Performance Monitoring
- DB_CACHE_ADVICE
Description
High simulator lru latch contention can occur when db_cache_advice is set to ON if there is a large buffer cache. Workaround: Set db_cache_advice to OFF登录后复制
当然,这个只是治标不治本的做法,这个是显现的表象的问题,根源的问题还是这个sql语句有问题
当一个数据块读入到sga中时,该块的块头(buffer header)会放置在一个hash bucket的链表(hash chain)中。该内存结构由一系列cache buffers chains子latch保护(又名hash latch或者cbc latch)。对Buffer cache中的块,要select或者update、insert,delete等,都得先获得cache buffers chains子latch,以保证对chain的排他访问。若在过程中发生争用,就会等待latch:cache buffers chains事件。
产生原因: 1. 低效率的SQL语句(主要体现在逻辑读过高) 在某些环境中,应用程序打开执行相同的低效率SQL语句的多个并发会话,这些SQL语句都设法得到相同的数据集,每次执行都带有高 BUFFER_GETS(逻辑读取)的SQL语句是主要的原因。相反,较小的逻辑读意味着较少的latch get操作,从而减少锁存器争用并改善性能。注意v$sql中BUFFER_GETS/EXECUTIONS大的语句。 2.Hot block 当多个会话重复访问一个或多个由同一个子cache buffers chains锁存器保护的块时,热块就会产生。当多个会话争用cache buffers chains子锁存器时,就会出现这个等待事件。有时就算调优了SQL,但多个会话同时执行此SQL,那怕只是扫描特定少数块,也是也会出现HOT BLOCK的。
SELECT P935.SEQUENCEID, null FA_SEQUENCEID, P935.ORDERID, P935.ORGORDERID, P935.PRODUCTNAME, P935.PRODUCTNUM, P935.ORDERTIME, P935.LASTUPDATETIME, P935.ORDERSTATUS, P935.MEMO, 935 orderCode, P935.PAYERACCTCODE, P935.PAYERACCTTYPE, P935.PAYEEACCTCODE PLATACCTCODE, P935.PAYEEACCTTYPE PLATACCTTYPE, P936.PAYEEACCTCODE, P936.PAYEEACCTTYPE, EXT935.PAYER_DISPLAYNAME, EXT935.PAYER_NAME, EXT935.PAYER_IDC, EXT935.PAYER_MEMBERTYPE, EXT936.PAYER_DISPLAYNAME PLAT_DISPLAYNAME, EXT936.SUBMITNAME PLAT_NAME, EXT936.PAYER_IDC PLAT_IDC, EXT936.PAYER_MEMBERTYPE PLAT_MEMBERTYPE, EXT936.PAYEE_DISPLAYNAME, EXT936.PAYEE_NAME, EXT936.PAYEE_IDC, EXT936.PAYEE_MEMBERTYPE, P935.PAYEEDISPLAYNAME WEBSITENAME, CASE WHEN (SELECT count(*) FROM PAYMENTORDER P936 WHERE P936.Ordercode = 936 and P936.Orderstatus = 0 AND <span style="color:#ff0000;">P936.Relatedsequenceid = P935.SEQUENCEID</span>) > 0 THEN 0 ELSE 1 END AS SHARINGRESULT, CASE D935.Dealcode WHEN 210 then 14 else D935.DEALTYPE end PAYMETHOD, D935.DEALAMOUNT, G935.EXT1, G935.Ext2, G935.PAYERCONTACTTYPE, G935.PAYERCONTACT, NVL(D935.PAYEEFEE, 0) PAYEEFEE, NVL(D935.PAYERFEE, 0) PAYERFEE, nvl(MS936.PAYEEFEE, 0) PLATFORMFEE, P935.VERSION FROM PAYMENTORDER P935, PAYMENTORDER P936, DEAL D935, GATEWAYORDER G935, MSGATEWAYSHARINGORDER MS936, PAYMENTORDEREXT EXT935, PAYMENTORDEREXT EXT936 WHERE P936.ORDERCODE = 936 AND P935.ORDERCODE = 935 AND P936.RELATEDSEQUENCEID = to_char(P935.SEQUENCEID) AND P935.SEQUENCEID = G935.SEQUENCEID(+) AND P935.SEQUENCEID = D935.ORDERSEQID(+) AND P935.SEQUENCEID = EXT935.ORDERSEQID(+) AND P936.SEQUENCEID = EXT936.ORDERSEQID(+) AND P936.SEQUENCEID = MS936.SEQUENCEID(+) AND MS936.SHARINGTYPE = 1 AND P935.SEQUENCEID = :1 UNION SELECT P938.SEQUENCEID, P935.SEQUENCEID FA_SEQUENCEID, P938.ORDERID, P938.ORGORDERID, P935.PRODUCTNAME, P935.PRODUCTNUM, P938.ORDERTIME, P938.LASTUPDATETIME, P938.ORDERSTATUS, P938.MEMO, 938 orderCode, P938.PAYERACCTCODE, P938.PAYERACCTTYPE, P938.PAYEEACCTCODE PLATACCTCODE, P938.PAYEEACCTTYPE PLATACCTTYPE, P938.PAYEEACCTCODE, P938.PAYEEACCTTYPE, EXT938.PAYER_DISPLAYNAME, EXT938.PAYER_NAME, EXT938.PAYER_IDC, EXT938.PAYER_MEMBERTYPE, EXT938.PAYEE_DISPLAYNAME PLAT_DISPLAYNAME, EXT938.SUBMITNAME PLAT_NAME, EXT938.PAYEE_IDC PLAT_IDC, EXT938.PAYEE_MEMBERTYPE PLAT_MEMBERTYPE, EXT938.PAYEE_DISPLAYNAME, EXT938.PAYEE_NAME, EXT938.PAYEE_IDC, EXT938.PAYEE_MEMBERTYPE, P935.PAYEEDISPLAYNAME WEBSITENAME, null SHARINGRESULT, D938.DEALTYPE PAYMETHOD, D938.DEALAMOUNT, G935.EXT1, G935.Ext2, G935.PAYERCONTACTTYPE, G935.PAYERCONTACT, NVL(D938.PAYEEFEE, 0) PAYEEFEE, NVL(D938.PAYERFEE, 0) PAYERFEE, 0 PLATFORMFEE, P935.VERSION FROM PAYMENTORDER P935, PAYMENTORDER P938, DEAL D938, GATEWAYORDER G935, PAYMENTORDEREXT EXT938 WHERE P935.ORDERCODE = 935 AND P938.ORDERCODE = 938 AND P938.RELATEDSEQUENCEID = to_char(P935.SEQUENCEID) AND P935.SEQUENCEID = G935.SEQUENCEID(+) AND P938.SEQUENCEID = D938.ORDERSEQID(+) AND P938.SEQUENCEID = EXT938.ORDERSEQID(+) AND P935.SEQUENCEID = :2
分析上面的sql,上面标红的地方,等号左边是varchar2的数据类型,括号右边是number的数据类型,会导致数据类型的隐式转换,造成极大的性能影响
联系研发,修改了sql语句,问题解决

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站7月28日消息,据外媒TechRader报道,富士通详细介绍了计划于2027年出货的FUJITSU-MONAKA(以下简称MONAKA)处理器。MONAKACPU基于“云原生3D众核”架构,采用Arm指令集,面向数据中心、边缘与电信领域,适用于AI计算,能实现大型机级别的RAS1。富士通表示,MONAKA将在能效和性能方面实现飞跃:得益于超低电压(ULV)工艺等技术,该CPU可实现2027年竞品2倍的能效,冷却无需水冷;此外该处理器的应用性能也可达对手2倍。在指令方面,MONAKA配备的矢量

英特尔ArrowLake预计将基于与LunarLake相同的处理器架构,这意味着英特尔全新的LionCove性能核心将与经济的Skymont效率核心相结合。而LunarLake仅作为ava推出

本站6月1日消息,消息源@CodeCommando今天发布推文,分享了AMD即将在Computex2024活动中的部分演示文档截图,推文内容为“AM4永不消亡”,配图展示了两款新的Ryzen5000XT系列处理器。根据截图内容显示以下两款产品:Ryzen95900XTRyzen95900XT定位相对高端,这是一款全新的16核AM4处理器,其时钟速度略低于AMD的Ryzen95950X。Ryzen75800XT它是AMD现有Ryzen75800X处理器的更快变体,这两款处理器的主频最高可达4.8G

Inteli5-12600及以上CPU,i5-13400及以上CPU都有P-Core性能核(大核)和E-Core能效核(小核),因“大小核”的调度问题,导致某些游戏掉帧、卡顿,还不如之前的老CPU,其实是系统觉得应付当前场景,小弟就能搞定,没必要出动大哥,所以大核一直在休息没有干活导致。下面小编教大家如何解决这个问题。在桌面上新建一个文本文档,复制下面内容,另存为1.reg,然后右键合并。WindowsRegistryEditorVersion5.00[HKEY_LOCAL_MACHINE\SY

本站5月7日消息,博主金猪升级包近日爆料,称英特尔下一代桌面处理器ArrowLake-S系列的核显将包含多个版本,同时配套的Z890主板有望标配雷电4接口。根据目前消息,ArrowLake-S系列CPU将采用GT1规格的核显,拥有至多4个Xe-core(即64EU)。不过英特尔还是将在低阶产品的核显上“秀刀法”,切出仅包含3个乃至2个Xe-core的型号。对低阶产品降级核显规模是英特尔的惯例,目前已推出的酷睿Ultra5125H处理器就仅包含7个Xe-core,低于MeteorLake-P系列产

13代14代处理器出现游戏崩溃、蓝屏死机、电脑自动重启等故障,之前怀疑是nvidia显卡导致,后nvidia查询后是英特尔处理器的锅,最近英特尔将第13/14代处理器稳定问题归咎于主板和BIOS系统制造商。现英特尔也提出了解决方法,下面与小编一起看看吧。600和700系列主板BIOS中涉及13代和14代酷睿处理器电压、频率、功耗和稳定性方面的设置选项,不正确设置、或者设置值超出英特尔官方所允许的范围之外,均有可能会导致、或者增加处理器运行不稳定的风险,英特尔方面的推荐设置如下(请参阅下图):【C

本站8月22日消息,X平台用户포시포시(@harukaze5719)注意到,英特尔在其官网DESIGN-iNTOOLSstore上架了两款适用于LGA9324-OKS-AP平台供电测试的转接板。▲BLU版本转接板,此外还有RED版本英特尔在这两款产品的描述中写到,LGA9324-OKS-APOakStream平台支持DiamondRapids,正面证实了至强6“GraniteRapids”后的下代至强性能核处理器与对应平台的存在。目前有关DiamondRapids处理器和OakStream平台的

本站7月3日消息,博主金猪升级包近日在微博动态下方的回应中表示,AMDKrackanPoint处理器隶属RyzenAI300产品线,将于明年推出。AMD在2024台北国际电脑展上发布了RyzenAI300处理器,目前推出的两款产品均基于StrixPoint系列,核心规格如下:AMDRyzenAI9HX370:12核(4×Zen5+8×Zen5c)CPU,16CU规模RDNA3.5架构Radeon890M核显;AMDRyzenAI9365:10核(4×Zen5+6×Zen5c)CPU,12CU规模
