首页 > 数据库 > mysql教程 > topicmodel-LDA1

topicmodel-LDA1

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
发布: 2016-06-07 16:12:52
原创
1140 人浏览过

step1 : install gensim step 2 :Corpora and Vector Spaces 将用字符串表示的文档转换为用id表示的文档向量: documents = [Human machine interface for lab abc computer applications, A survey of user opinion of computer system response time, The E

step1 : install gensim

step 2 :Corpora and Vector Spaces

将用字符串表示的文档转换为用id表示的文档向量:

documents = ["Human machine interface for lab abc computer applications",
    "A survey of user opinion of computer system response time",
    "The EPS user interface management system",
    "System and human system engineering testing of EPS",
    "Relation of user perceived response time to error measurement",
    "The generation of random binary unordered trees",
    "The intersection graph of paths in trees",
    "Graph minors IV Widths of trees and well quasi ordering",
    "Graph minors A survey"]
"""
#use StemmedCountVectorizer to get stemmed without stop words corpus
Vectorizer = StemmedCountVectorizer
# Vectorizer = CountVectorizer
vectorizer = Vectorizer(stop_words='english')
vectorizer.fit_transform(documents)
texts = vectorizer.get_feature_names()
# print(texts)
"""
texts = [doc.lower().split() for doc in documents]
# print(texts)
dict = corpora.Dictionary(texts)    #自建词典
# print dict, dict.t【本文来自鸿网互联 (http://www.68idc.cn)】oken2id
#通过dict将用字符串表示的文档转换为用id表示的文档向量
corpus = [dict.doc2bow(text) for text in texts]
print(corpus)
登录后复制
相关标签:
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板