Python(Stackless) + MongoDB Apache 日志(2G)分析
为何选择Stackless? http://www.stackless.com Stackless可以简单的认为是Python一个增强版,最吸引眼球的非“微线程”莫属。微线程是轻量级的线程,与线程相比切换消耗的资源更小,线程内共享数据更加便捷。相比多线程代码更加简洁和可读。此项目是由EVE O
为何选择Stackless? http://www.stackless.com
Stackless可以简单的认为是Python一个增强版,最吸引眼球的非“微线程”莫属。微线程是轻量级的线程,与线程相比切换消耗的资源更小,线程内共享数据更加便捷。相比多线程代码更加简洁和可读。此项目是由EVE Online推出,在并发和性能上确实很强劲。安装和Python一样,可以考虑替换原系统Python。:)
为何选择MongoDB? http://www.mongodb.org
可以在官网看到很多流行的应用采用MongoDB,比如sourceforge,github等。相比RDBMS有啥优势?首先在速度和性能上优势最为明显,不仅可以当作类似KeyValue数据库来使,还包含了一些数据库查询(Distinct、Group、随机、索引等特性)。再有一点特性就是:简单。不论是应用还是文档,还是第三方API,几乎略过一下就可以使用。不过有点遗憾的就是,存储的数据文件很大,超过正常数据的2-4倍之间。本文测试的Apache日志大小是2G,生产的数据文件有6G。寒...希望在新版里能有所缩身,当然这个也是明显的以空间换速度的后果。
本文除去上面提及到的两个软件,还需要安装pymongo模块。http://api.mongodb.org/python/
模块安装方式有源码编译和easy_install,这里就不再累赘。
- 从Apache日志中分析出需要保存的资料,比如IP,时间,GET/POST,返回状态码等。
fmt_str = '(?P[.\d]+) - - \[(?P.*?)\] "(?P.*?) (?P.*?) HTTP/1.\d" (?P\d+) (?P.*?) "(?P.*?)" "(?P.*?)"' fmt_name = re.findall('\?P', fmt_str) fmt_re = re.compile(fmt_str)
定义了一个正则用于提取每行日志的内容。fmt_name就是提取尖括号中间的变量名。
- 定义MongoDB相关变量,包括需要存到collection名称。Connection采取的是默认Host和端口。
conn = Connection() apache = conn.apache logs = apache.logs
- 保存日志行
def make_line(line): m = fmt_re.search(line) if m: logs.insert(dict(zip(fmt_name, m.groups())))
- 读取Apache日志文件
def make_log(log_path): with open(log_path) as fp: for line in fp: make_line(line.strip())
- 运行把。
if __name__ == '__main__': make_log('d:/apachelog.txt')
脚本大致情况如此,这里没有放上stackless部分代码,可以参考下面代码:
import stackless def print_x(x): print x stackless.tasklet(print_x)('one') stackless.tasklet(print_x)('two') stackless.run()
tasklet操作只是把类似操作放入队列中,run才是真正的运行。这里主要用于替换原有多线程threading并行分析多个日志的行为。
补充:
Apache日志大小是2G,671万行左右。生成的数据库有6G。
硬件:Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz 台式机
系统:RHEL 5.2 文件系统ext3
其他:Stackless 2.6.4 MongoDB 1.2
在保存300万左右时候,一切正常。不管是CPU还是内存,以及插入速度都很不错,大概有8-9000条/秒。和以前笔记本上测试结果基本一致。再往以后,内存消耗有点飙升,插入速度也降低。500万左右记录时候CPU达到40%,内存消耗2.1G。在生成第二个2G数据文件时候似乎速度和效率又提升上去了。最终保存的结果不是太满意。
后加用笔记本重新测试了一下1000万数据,速度比上面的671万明显提升很多。初步怀疑有两个地方可能会影响性能和速度:
文件系统的差异。笔记本是Ubuntu 9.10,ext4系统。搜了下ext3和ext4在大文件读写上会有所差距。
正则匹配上。单行操作都是匹配提取。大文件上应该还有优化的空间。
原文地址:Python(Stackless) + MongoDB Apache 日志(2G)分析, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

在开发一个电商网站时,我遇到了一个棘手的问题:如何为用户提供个性化的商品推荐。最初,我尝试了一些简单的推荐算法,但效果并不理想,用户的满意度也因此受到影响。为了提升推荐系统的精度和效率,我决定采用更专业的解决方案。最终,我通过Composer安装了andres-montanez/recommendations-bundle,这不仅解决了我的问题,还大大提升了推荐系统的性能。可以通过一下地址学习composer:学习地址

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。
