hadoop的一些名词解释
在网上收集了一些mapreduce中常用的一些名词的解释,分享一下: Shuffle(洗牌):当第一个map任务完成后,节点可能还要继续执行更多的map 任务,但这时候也开始把map任务的中间输出交换到需要它们的 reducer那里去,这个移动map输出到 reducer 的过程叫做sh
在网上收集了一些mapreduce中常用的一些名词的解释,分享一下:
Shuffle(洗牌):当第一个map任务完成后,节点可能还要继续执行更多的map 任务,但这时候也开始把map任务的中间输出交换到需要它们的 reducer那里去,这个移动map输出到 reducer 的过程叫做shuffle。
?
Partition:每一个reduce节点会分派到中间输出的键集合中的一个不同的子集合,这些子集合(被称为“partitions”)是reduce任务的输入数据。每一个map任务生成的键值对可能会隶属于任意的partition,有着相同键的数值总是在一起被reduce,不管它是来自那个mapper的。因此,所有的map 节点必须就把不同的中间数据发往何处达成一致。Partitioner 类就是用来决定给定键值对的去向,默认的分类器(partitioner)会计算键的哈希值并基于这个结果来把键赋到相应的partition上。
?
排序(Sort):每一个reduce任务负责归约(reduceing)关联到相同键上的所有数值,每一个节点收到的中间键集合在被送到具体的reducer那里前就已经自动被Hadoop排序过了。
?
Combiner:前面展示的流水线忽略了一个可以优化MapReduce作业所使用带宽的步骤,这个过程叫Combiner,它在Mapper之后 Reducer之前运行。Combiner是可选的,如果这个过程适合于你的作业,Combiner 实例会在每一个运行map任务的节点上运行。Combiner会接收特定节点上的 Mapper 实例的输出作为输入,接着 Combiner 的输出会被发送到Reducer那里,而不是发送Mapper的输出。 Combiner是一个“迷你reduce”过程,它只处理单台机器生成的数据。
?
Reporter:是用于Map/Reduce应用程序报告进度,设定应用级别的状态消息, 更新Counters(计数器)的机制。
?
Mapper和Reducer的实现可以利用Reporter 来报告进度,或者仅是表明自己运行正常。在那种应用程序需要花很长时间处理个别键值对的场景中,这种机制是很关键的,因为框架可能会以为这个任务超时了,从而将它强行杀死。另一个避免这种情况发生的方式是,将配置参数mapred.task.timeout设置为一个足够高的值(或者干脆设置为零,则没有超时限制了)。 应用程序可以用Reporter来更新Counter(计数器)。
?
OutputCollector:是一个Map/Reduce框架提供的用于收集 Mapper或Reducer输出数据的通用机制 (包括中间输出结果和作业的输出结果)。
作者:p_3er 发表于2013-7-5 15:59:55 原文链接
阅读:16 评论:0 查看评论
原文地址:hadoop的一些名词解释, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

随着数据量的不断增大,传统的数据处理方式已经无法处理大数据时代带来的挑战。Hadoop是开源的分布式计算框架,它通过分布式存储和处理大量的数据,解决了单节点服务器在大数据处理中带来的性能瓶颈问题。PHP是一种脚本语言,广泛应用于Web开发,而且具有快速开发、易于维护等优点。本文将介绍如何使用PHP和Hadoop进行大数据处理。什么是HadoopHadoop是

Java大数据技术栈:了解Java在大数据领域的应用,如Hadoop、Spark、Kafka等随着数据量不断增加,大数据技术成为了当今互联网时代的热门话题。在大数据领域,我们常常听到Hadoop、Spark、Kafka等技术的名字。这些技术起到了至关重要的作用,而Java作为一门广泛应用的编程语言,也在大数据领域发挥着巨大的作用。本文将重点介绍Java在大

一:安装JDK1.执行以下命令,下载JDK1.8安装包。wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2.执行以下命令,解压下载的JDK1.8安装包。tar-zxvfjdk-8u151-linux-x64.tar.gz3.移动并重命名JDK包。mvjdk1.8.0_151//usr/java84.配置Java环境变量。echo'

Hadoop的三大核心组件分别是:Hadoop Distributed File System(HDFS)、MapReduce和Yet Another Resource Negotiator(YARN)。

在当前的互联网时代,海量数据的处理是各个企业和机构都需要面对的问题。作为一种广泛应用的编程语言,PHP同样需要在数据处理方面跟上时代的步伐。为了更加高效地处理海量数据,PHP开发引入了一些大数据处理工具,如Spark和Hadoop等。Spark是一款开源的数据处理引擎,可以用于大型数据集的分布式处理。Spark的最大特点是具有快速的数据处理速度和高效的数据存

随着现代社会对数据量需求的不断增加,处理海量数据的能力成为了计算机领域的一个热门话题。而在这个领域中,Hadoop与Hbase两个开源软件具备了非常重要的地位,它们被广泛用于大数据存储、处理和分析。本文主要介绍在JavaAPI开发中使用HadoopHbase进行大数据存储的相关内容。什么是Hadoop和HbaseHadoop是一个由Apache开发的、高
