2dsphere, GeoJSON, and Doctrine MongoDB
By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM. It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one
By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM.
It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one of my PHP driver teammates and a renowned OpenStreetMap aficionado, recently blogged about importing OSM data into MongoDB as GeoJSON objects. A few days later, GitHub added support for rendering .geojson
files in repositories, using a combination of Leaflet.js, MapBox, and OpenStreetMap data. Coincidentally, I visited a local CloudCamp meetup last week to present on geospatial data, and for the past two weeks I’ve been working on adding support for MongoDB 2.4’s geospatial query operators to Doctrine MongoDB.
Doctrine MongoDB is an abstraction for the PHP driver that provides a fluent query builder API among other useful features. It’s used internally by Doctrine MongoDB ODM, but is completely usable on its own. One of the challenges in developing the library has been supporting multiple versions of MongoDB and the PHP driver. The introduction of read preferences last year is one such example. We wanted to still allow users to set slaveOk
bits for older server and driver versions, but allow read preferences to apply for newer versions, all without breaking our API and abiding by semantic versioning. Now, the setSlaveOkay()
method in Doctrine MongoDB will invoke setReadPreference()
if it exists in the driver, and fall back to the deprecated setSlaveOkay()
driver method otherwise.
Query Builder API
Before diving into the geospatial changes for Doctrine MongoDB, let’s take a quick look at the query builder API. Suppose we had a collection, test.places
, with some OpenStreetMap annotations (key=value
strings) stored in a tags
array and a loc
field containing longitude/latitude coordinates in MongoDB’s legacy point format (a float tuple) for a 2d
index. Doctrine’s API allows queries to be constructed like so:
$connection = new \Doctrine\MongoDB\Connection(); $collection = $connection->selectCollection('test', 'places'); $qb = $collection->createQueryBuilder() ->field('loc') ->near(-73.987415, 40.757113) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant'); $cursor = $qb->getQuery()->execute();
This above example executes the following query:
{ "loc": { "$near": [-73.987415, 40.757113], "$maxDistance": 0.00899928 }, "tags": "amenity=restaurant" }
This simple query will return restaurants within half a kilometer of 10gen’s NYC office at 229 West 43rd Street. If only it was so easy to find good restaurants near Times Square!
Supporting New and Old Geospatial Queries
When the new 2dsphere
index type was introduced in MongoDB 2.4, operators such $near
and $geoWithin
were changed to accept GeoJSON geometry objects in addition to their legacy point and shape arguments. $near
was particularly problematic because of its optional $maxDistance
argument. As shown above, $maxDistance
previously sat alongside $near
and was measured in radians. It now sits within $near
and is measured in meters. Using a 2dsphere
index and GeoJSON points, the same query takes on a whole new shape:
{ "loc": { "$near": { "$geometry": { "type": "Point", "coordinates" [-73.987415, 40.757113] }, "$maxDistance": 500 } }, "tags": "amenity=restaurant" }
This posed a hurdle for Doctrine MongoDB’s query builder, because we wanted to support 2dsphere
queries without drastically changing the API. Unfortunately, there was no obvious way for near()
to discern whether a pair of floats denoted a legacy or GeoJSON point, or whether a number signified radians or meters in the case of maxDistance()
. I also anticipated we might run into a similar quandry for the $geoWithin
builder method, which accepts an array of point coordinates.
Method overloading seemed preferable to creating separate builder methods or introducing a new “mode” parameter to handle 2dsphere
queries. Although PHP has no language-level support for overloading, it is commonly implemented by inspecting an argument’s type at runtime. In our case, this would necessitate having classes for GeoJSON geometries (e.g. Point, LineString, Polygon), which we could differentiate from the legacy geometry arrays.
Introducing a GeoJSON Library for PHP
A cursory search for GeoJSON PHP libraries turned up php-geojson, from the MapFish project, and geoPHP. I was pleased to see that geoPHP was available via Composer (PHP’s de facto package manager), but neither library implemented the GeoJSON spec in its entirety. This seemed like a ripe opportunity to create such a library, and so geojson was born a few days later.
At the time of this writing, 2dsphere
support for Doctrine’s query builder is still being developed; however, I envision it will take the following form when complete:
use GeoJson\Geometry\Point; // ... $qb = $collection->createQueryBuilder() ->field('loc') ->near(new Point([-73.987415, 40.757113])) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant');
All of the GeoJson classes implement JsonSerializable, one of the newer interfaces introduced in PHP 5.4, which will allow Doctrine to prepare them for MongoDB queries with a single method call. One clear benefit over the legacy geometry arrays is that the GeoJson library performs its own validation. When a Polygon is passed to geoWithin()
, Doctrine won’t have to worry about whether all of its rings are closed LineStrings; the library would catch such an error in the constructor. This helps achieve a separation of concerns, which in turn increases the maintainability of both libraries.
I look forward to finishing up 2dsphere
support for Doctrine MongoDB in the coming weeks. In the meantime, if you happen to fall in the fabled demographic of PHP developers in need of a full GeoJSON implementation, please give geojson a look and share some feedback.
原文地址:2dsphere, GeoJSON, and Doctrine MongoDB, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本文讨论了使用MySQL的Alter Table语句修改表,包括添加/删除列,重命名表/列以及更改列数据类型。

文章讨论了为MySQL配置SSL/TLS加密,包括证书生成和验证。主要问题是使用自签名证书的安全含义。[角色计数:159]

文章讨论了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比较了它们对初学者和高级用户的功能和适合性。[159个字符]

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

本文讨论了使用Drop Table语句在MySQL中放下表,并强调了预防措施和风险。它强调,没有备份,该动作是不可逆转的,详细介绍了恢复方法和潜在的生产环境危害。

本文讨论了在PostgreSQL,MySQL和MongoDB等各个数据库中的JSON列上创建索引,以增强查询性能。它解释了索引特定的JSON路径的语法和好处,并列出了支持的数据库系统。
