Impala源代码分析(3)-backend查询执行过程
这篇文章主要介绍impala-backend是怎么执行一个SQL Query的。 在Impala中SQL Query的入口函数是: void ImpalaServer::query(QueryHandle query_handle, const Query query) 生成一个QueryExecState伴随这个SQL执行的生命周期,代表正在执行的这个SQL; 调用E
这篇文章主要介绍impala-backend是怎么执行一个SQL Query的。
在Impala中SQL Query的入口函数是:
void ImpalaServer::query(QueryHandle& query_handle, const Query& query)
- 生成一个QueryExecState伴随这个SQL执行的生命周期,代表正在执行的这个SQL;
- 调用Execute函数启动执行流程;
- 启动一个Wait线程等待结果。
这个Execute()函数首先是通过JNI向impala-fe请求SQL解析和执行计划生成(已经在上一篇文章中讲了这个过程),得到该Query对应的TExecRequest对象,交由impala-backend执行。
从下面这个函数开始backend执行,同时开始fragment status report。
Status ImpalaServer::QueryExecState::Exec(TExecRequest* exec_request)
因为我们知道在impala里面,一个Query是分配到多个节点执行的,我们把其中负责分配和协调这个Query执行的组件叫Coordinator;参与这个Query执行的每个节点叫backend instance,每个backend instance上面会执行一个或者多个PlanFragment。那么每个Query就对应一个Coordinator对象和多个backend instance,同时Coordinator中的query_profile_ 变量是用来统计这个query的执行的整个profile的。
Coordinator
这里首先生成Coordinator用于协调这个Query的执行,然后调用
Status?Coordinator::Exec(
const TUniqueId& query_id, TQueryExecRequest* request,
const TQueryOptions& query_options)
启动异步的执行过程:说白了这个Coordinator就是老板,把活(PlanFragment)都给各个下属(backend instance)安排好了,发出去,然后自己下班走人了,才不会等着下属干完了才走呢。因为老板早就安排好自己的秘书(ImpalaServer::Wait())去盯着结果呢。
这个函数里面最重要的两个步骤:
- ComputeScanRangeAssignment(*request);
- ComputeFragmentExecParams(*request);
其中ComputeScanRangeAssignment(const TQueryExecRequest& exec_request)?用于填充std::vector
typedef boost::unordered_map
另外一个函数ComputeFragmentExecParams?(const TQueryExecRequest& exec_request)?用于填充std::vector
- Status Coordinator::ComputeFragmentHosts(const TQueryExecRequest& exec_request):为每个PlanFragment找到执行所在的backend instance。如果一个PlanFragment是UNPARTITIONED,那么就在这个Coordinator所在的host上运行;如果一个PlanFragment含有ScanNode,那么就调度这个PlanFragment到HDFS/HBase数据块所在的那些DataNodes上,也就是这些DataNodes就成为了执行这个Query的backend instance。
- 计算TQueryExecRequest.fragments中每个PlanFragment会在哪些hosts上得到执行,填充到fragment_exec_params_ 中。
- 依次给每个PlanFragment执行的每个host分配一个instance_id。
- 填充每个?FragmentExecParams?的destinations(即Data Sink的目的地PlanFragment)和per_exch_num_senders(这个ExchangeNode会接收来自多少个PlanFragment的数据)
回到Coordinator::Exec()函数中,下面就该把各个PlanFragment分配干活了。
- 如果有Coordinator PlanFragment,那么先new PlanFragmentExecutor()生成这个PlanFragment所对应的PlanFragmentExecutor。然后填充其对应的TExecPlanFragmentParams。
- 下面是个双层循环:外层遍历PlanFragment,内层遍历backend instance,生成与每个instance关联的BackendExecState(主要是生成TExecPlanFragmentParams用于Coordinator与多个backend instance交互时的参数),并加入backend_exec_states_列表,用于Coordinator对所有的backend instance执行状况的管理。然后向每个instance发起RPC请求开始执行,请求协议是ImpalaInternalService:: ExecPlanFragment(TExecPlanFragmentParams)
Status fragments_exec_status = ParallelExecutor::Exec(
bind
reinterpret_cast
num_hosts);
每个Coordinator,PlanFragmentExecutor和ExecNode都会有一个RuntimeProfile,所有的RuntimeProfile会构成树状结构来记录每个执行节点的执行过程中的信息。
在Coordinator有个成员变量boost::scoped_ptr
每个Coordinator还有个aggregate_profile_专门负责aggregate相关的profile。
PlanFragmentExecutor和ExecNode
无论是在Coordinator端还是在backend instance端执行的PlanFragment都是由一个PlanFragmentExecutor控制的。下面我们看看PlanFragment在backend instance是怎么执行的?
在RPC的server端调用了ImpalaServer::ExecPlanFragment()->ImpalaServer::StartPlanFragmentExecution()
生成FragmentExecState里面含有一个PlanFragmentExecutor。那么下面就是分析PlanFragmentExecutor怎么控制Query的执行的了。
- FragmentExecState::Prepare()调用PlanFragmentExecutor::Prepare()
- FragmentExecState::Exec()调用PlanFragmentExecutor::Open(),这个是PlanFragment执行的主循环,block直到该PlanFragment执行结束。
真正控制PlanFragment执行的是PlanFragmentExecutor,主要由Prepare()/Open()/GetNext()/Close()这几个函数组成。
1,? PlanFragmentExecutor::Prepare(TExecPlanFragmentParams):准备执行,主要流程如下:
- 设定这个query能够使用的内存mem_limit;
- DescriptorTbl::Create():初始化descriptor table;
- ExecNode::CreateTree():生成执行树的结构(父子关系)。执行树由ExecNode组成,每一个ExecNode也提供了Prepare(), Open(), GetNext()函数。后面执行ExecNode::Prepare/Open/GenNext /EvalConjuncts/Close函数都是按照这个树状结构递归下去的。初始化完成后,PlanFragmentExecutor ::plan_指向了执行树的根节点。在这棵树中,root节点被最后执行,叶子节点被最先执行;
- 设置该PlanFragment的Exchange Node会接收来自多少个sender的数据;
- 调用plan_->Prepare():从根节点开始递归初始化执行树,主要是初始化runtime_profile等统计信息和conjuncts的LLVM本地代码生成 (adding functions to the LlvmCodeGen object);
- 如果使用本地代码生成,调用runtime_state_->llvm_codegen()->OptimizedModule()进行优化;
- 把所有的ScanNode对应的Scan Range映射到file/offset/length;
- DataSink::CreateDataSink();
- set up profile counter;
- 生成RowBatch用于存储结果。
2,PlanFragmentExecutor::Open()
先是start the profile-reporting thread,然后调用OpenInternal()
(1)???? 调用plan_->Open()沿着生成的ExecNode执行树依次调用ExecNode:: Open()
下面以HdfsScanNode::Open()为例说明:
- 调用DiskIoMgr:: RegisterReader初始化与HDFS的连接hdfs_connection_;
- 把要读取的File 和Split加入HdfsScanNode的队列queued_ranges_中;
- 调用HdfsScanNode::DiskThread驱动HdfsScanNode::StartNewScannerThread()->HdfsScanNode::ScannerThread->HdfsScanner:: ProcessSplit()去读取数据(目前一个scanner thread只能读取一个scan range);
- 调用IssueQueuedRanges()把上面加入queued_ranges_中的预读取Range发送给DiskIoMgr。由于上一步中已经启动了disk thread,所以就可以读取数据了。
(2)???? 如果当前这个PlanFragmen有sink,那么需要把这个PlanFragment要发给其他PF的数据都发出去。在发出去之前肯定得获取要发的东西吧,调用PlanFragmentExecutor ::GetNextInternal()从上到下递归调用执行树的ExecNode::GetNext()获取执行结果。
上面说到对于ExecNode::Open()不同种类的ExecNode的逻辑是不一样的,对于GetNext()也是一样的,可以参考下HdfsScanNode::GetNext()或者HashJoinNode::GetNext()看看具体是怎么获取查询结果的。
3,? PlanFragmentExecutor::GextNext(RowBatch** batch)
显示触发执行树的ExecNode::GetNext()函数获取查询结果。当其标记PlanFragmentExecutor::done_==true时,则表明所有数据已经被处理完,该PlanFragmentExecutor可以退出了。
至此,impala-backend也分析完了。总的来说impala在执行过程中和MapReduce及Hive的不同可以概括为一拉一推。
- 在MapReduce中,Map的输出结果要等着Reduce去拉;而impala中各个PlanFragment执行结束之后DataSink是推送到其他PlanFragment的。这样能更加有效利用带宽,加快Job执行速度。
- 在Hive中,逻辑上下游节点是由上游节点推送给下游节点的;而impala中是下游节点通过递归调用GetNext()向上游节点拉取的。
原文地址:Impala源代码分析(3)-backend查询执行过程, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在Linux下更新curl版本,您可以按照以下步骤进行操作:检查当前curl版本:首先,您需要确定当前系统中安装的curl版本。打开终端,并执行以下命令:curl--version该命令将显示当前curl的版本信息。确认可用的curl版本:在更新curl之前,您需要确定可用的最新版本。您可以访问curl的官方网站(curl.haxx.se)或相关的软件源,查找最新版本的curl。下载curl源代码:使用curl或浏览器,下载您选择的curl版本的源代码文件(通常为.tar.gz或.tar.bz2

12306订票app下载最新版是一款大家非常满意的出行购票软件,想去哪里就去那里非常方便,软件内提供的票源非常多,只需要通过实名认证就能在线购票,所有用户的出行车票机票都可以轻松买到,享受不同的优惠折扣。还能提前开启预约抢票,预约酒店、专车接送都是可以的,有了它想去哪里就去那里一键购票,出行更加简单方便,让大家的出行体验更舒服,现在小编在线详细为12306用户们带来查看历史购票记录的方法。 1.打开铁路12306,点击右下角我的,点击我的订单 2.在订单页面点击已支付。 3.在已支付页

学信网如何查询自己的学历?在学信网中是可以查询到自己的学历,很多用户都不知道如何在学信网中查询到自己的学历,接下来就是小编为用户带来的学信网查询自己学历方法图文教程,感兴趣的用户快来一起看看吧!学信网使用教程学信网如何查询自己的学历一、学信网入口:https://www.chsi.com.cn/二、网站查询:第一步:点击上方学信网地址,进入首页点击【学历查询】;第二步:在最新的网页中点击如下图箭头所示的【查询】;第三步:之后在新页面点击【的登陆学信档案】;第四步:在登陆页面输入信息点击【登陆】;

MySQL与PL/SQL是两种不同的数据库管理系统,分别代表了关系型数据库和过程化语言的特点。本文将比较MySQL和PL/SQL的异同点,并附带具体的代码示例进行说明。MySQL是一种流行的关系型数据库管理系统,采用结构化查询语言(SQL)来管理和操作数据库。而PL/SQL是Oracle数据库特有的过程化语言,用于编写存储过程、触发器和函数等数据库对象。相同

使用苹果手机想要查询激活日期,最好的方法是通过手机中的序列号来查询,也可以通过访问苹果的官网来进行查询,通过连接电脑查询,下载第三方软件查询。苹果手机怎么查询激活日期答:序列号查询,苹果官网查询,电脑查询,第三方软件查询1、用户最好的方式就是知道自己手机的序列号,打开设置通用关于本机就可以看到序列号。2、使用序列号不仅可以知道自己手机的激活日期,还可以查看手机版本,手机产地,手机出厂日期等。3、用户访问苹果的官网找到技术支持,找到页面底部的服务和维修栏目,里面查看iPhone的激活信息。4、用户

Linux内核是一个开源的操作系统内核,其源代码存储在一个专门的代码仓库中。在本文中,我们将详细解析Linux内核源代码的存放路径,并通过具体的代码示例来帮助读者更好地理解。1.Linux内核源代码存放路径Linux内核源代码存储在一个名为linux的Git仓库中,该仓库托管在[https://github.com/torvalds/linux](http

标题:解析织梦CMS二级目录打不开的原因及解决方案织梦CMS(DedeCMS)是一款功能强大的开源内容管理系统,被广泛应用于各类网站建设中。然而,有时候在搭建网站过程中可能会遇到二级目录无法打开的情况,这给网站的正常运行带来了困扰。在本文中,我们将分析二级目录打不开的可能原因,并提供具体的代码示例来解决这一问题。一、可能的原因分析:伪静态规则配置问题:在使用

论坛是互联网上非常常见的网站形式之一,它为用户提供了一个分享信息、交流讨论的平台。而Discuz是一款常用的论坛程序,相信很多站长都已经非常熟悉了。在进行Discuz论坛的开发和管理过程中,经常需要查询数据库中的数据来进行分析或处理。在这篇文章中,我们将分享一些查询Discuz数据库位置的技巧,并提供具体的代码示例。首先,我们需要了解Discuz的数据库结构
