Managing the web nuggets with MongoDB and MongoKit
This is a guest post by Nicolas Clairon, maintainer of MongoKit and founder of Elkorado MongoKit is a python ODM for MongoDB. I created it in 2009 (when the ODM acronym wasnt even used) for my startup project called Elkorado. Now that the
This is a guest post by Nicolas Clairon, maintainer of MongoKit and founder of Elkorado
MongoKit is a python ODM for MongoDB. I created it in 2009 (when the ODM acronym wasn’t even used) for my startup project called Elkorado. Now that the service is live, I realize that I never wrote about MongoKit. I’d like to introduce it to you with this quick tutorial based on real use cases from Elkorado.
Elkorado: a place to store web nuggets
Elkorado is a collaborative, interest-based curation tool. It was born over the frustration that there is no place where to find quality resources about a particular topic of interest. There are so many blogs, forums, videos and websites out there that it is very difficult to find our way over this massive wealth of information.
Elkorado aims at helping people to centralize quality content, so they can find them later easily and discover new ones.
MongoDB to the rescue
Rapid prototyping is one of the most important thing in startup world and it is an area where MongoDB shines.
The web is changing fast, and so are web resources and their metadata. MongoDB’s and schemaless database is a perfect fit to store this kind of data. After losing hair by trying to use polymorphism with SQL databases, I went into MongoDB… and I felt in love with it.
While playing with the data, I needed a validation layer and wanted to add some methods to my documents. Back then, they was no ODM for Python. And so I created MongoKit.
MongoKit: MongoDB ODM for Python
MongoKit is a thin layer on top of Pymongo. It brings field validations, inheritance, polymorphism and a bunch of other features. Let’s see how it is used in Elkorado.
Elkorado is a collection of quality web resources called nuggets. This is how we could fetch a nugget discovered by the user “namlook” with Pymongo:
nuggets
here is a regular python dict.
Here’s a simple nugget definition with MongoKit:
Fetching a nugget with MongoKit is pretty the same:
However, this time, nugget is a Nugget
object and we can call the is_popular
method on it:
One of the main advantages of MongoKit is that all your models are registered and accessible via the connection
instance. MongoKit look at the __database__
and __collection__
fields to know which database and which collection has to be used. This is useful so we have only one place to specify those variables.
Inheritance
MongoKit was first build to natively support inheritance:
In this Core
object, we are defining the database name and some fields that will be shared by other models.
If one wants a Nugget
object to have date metadata, one just have to make it inherit from Core
:
It’s all about Pymongo
With MongoKit, your are still very close to Pymongo. In fact, MongoKit’s connection, database and collection are subclasses of Pymongo’s. If once in an algorithm, you need pure performances, you can directly use Pymongo’s layer which is blazing fast:
Here, connection
is a MongoKit connection but it can be used like a Pymongo connection. Note that to keep the benefice of DRY, we can call the pymongo’s layer from a MongoKit document:
A real life “simplified” example
Let’s see an example of CRUD done with MongoKit.
On Elkorado, each nugget is unique but multiple users can share a nugget which have differents metadata. Each time a user picks up a nugget, a UserNugget
is created with specific informations. If this is the first time the nugget is discovered, a Nugget
object is created, otherwise, it is updated. Here is a simplified UserNugget
structure:
This example well describes what can be done with MongoKit. Here, the save
method has been overloaded to check if a nugget exists (remember, each nugget is unique by its URL). It will create it if it is not already created, and update it.
Updating data with MongoKit is similar to Pymongo. Use save
on the object or use directly the Pymongo’s layer to make atomic updates. Here, we use atomic updates to push new topics and increase the popularity:
Getting live
Let’s play with our model:
When calling the save method, the document is validated against the UserNugget’s structure. As expected, the fields created_at
and updated_at
have been added:
and the related nugget has been created:
Conclusion
MongoKit is a central piece of Elkorado. It has been written to be small and minimalist but powerful. There is so much more to say about features like inherited queries, i18n and gridFS, so take a look at the wiki to read more about how this tool can help you.
Check the documentation for more information about MongoKit. And if you register on Elkorado, check out the nuggets about MongoDB. Don’t hesitate to share you nuggets as well, the more the merrier.
原文地址:Managing the web nuggets with MongoDB and MongoKit, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

机器之能报道编辑:吴昕国内版的人形机器人+大模型组队,首次完成叠衣服这类复杂柔性材料的操作任务。随着融合了OpenAI多模态大模型的Figure01揭开神秘面纱,国内同行的相关进展一直备受关注。就在昨天,国内"人形机器人第一股"优必选发布了人形机器人WalkerS深入融合百度文心大模型后的首个Demo,展示了一些有趣的新功能。现在,得到百度文心大模型能力加持的WalkerS是这个样子的。和Figure01一样,WalkerS没有走动,而是站在桌子后面完成一系列任务。它可以听从人类的命令,折叠衣物

Caddy简介Caddy是一款功能强大,扩展性高的Web服务器,目前在Github上已有38K Star。Caddy采用Go语言编写,可用于静态资源托管和反向代理。Caddy具有如下主要特性:对比Nginx复杂的配置,其独创的Caddyfile配置非常简单;可以通过其提供的AdminAPI实现动态修改配置;默认支持自动化HTTPS配置,能自动申请HTTPS证书并进行配置;能够扩展到数以万计的站点;可以在任意地方执行,没有额外的依赖;采用Go语言编写,内存安全更有保证。安装首先我们直接在CentO

防挡脸弹幕,即大量弹幕飘过,但不会遮挡视频画面中的人物,看起来像是从人物背后飘过去的。机器学习已经火了好几年了,但很多人都不知道浏览器中也能运行这些能力;本文介绍在视频弹幕方面的实践优化过程,文末列举了一些本方案可适用的场景,期望能开启一些脑洞。mediapipeDemo(https://google.github.io/mediapipe/)展示主流防挡脸弹幕实现原理点播up上传视频服务器后台计算提取视频画面中的人像区域,转换成svg存储客户端播放视频的同时,从服务器下载svg与弹幕合成,人像

首先你会有个疑惑,frp是什么呢?简单的说frp就是内网穿透工具,配置好客户端以后,可以通过服务器来访问内网。现在我的服务器,已经用nginx做站了,80端口只有一个,那如果frp的服务端也想使用80端口,那应该怎么办呢?经过查询,这个是可以实现的,就是利用nginx的反向代理来实现。补充一下:frps就是服务器端(server),frpc就是客户端(client)。第一步:修改服务器中nginx.conf配置文件在nginx.conf中http{}里添加以下参数,server{listen80

表单验证是Web应用程序开发中非常重要的一个环节,它能够在提交表单数据之前对数据进行有效性检查,避免应用程序出现安全漏洞和数据错误。使用Golang可以轻松地实现Web应用程序的表单验证,本文将介绍如何使用Golang来实现Web应用程序的表单验证。一、表单验证的基本要素在介绍如何实现表单验证之前,我们需要知道表单验证的基本要素是什么。表单元素:表单元素是指

JavaAPI开发中使用Jetty7进行Web服务器处理随着互联网的发展,Web服务器已经成为了应用程序开发的核心部分,同时也是许多企业所关注的焦点。为了满足日益增长的业务需求,许多开发人员选择使用Jetty进行Web服务器开发,其灵活性和可扩展性受到了广泛的认可。本文将介绍如何在JavaAPI开发中使用Jetty7进行We

Cockpit是一个面向Linux服务器的基于Web的图形界面。它主要是为了使新用户/专家用户更容易管理Linux服务器。在本文中,我们将讨论Cockpit访问模式以及如何从CockpitWebUI切换Cockpit的管理访问。内容主题:驾驶舱进入模式查找当前驾驶舱访问模式从CockpitWebUI启用Cockpit的管理访问从CockpitWebUI禁用Cockpit的管理访问结论驾驶舱进入模式驾驶舱有两种访问模式:受限访问:这是驾驶舱的默认访问模式。在这种访问模式下,您不能从驾驶舱Web用户

PHP在Web开发中是属于后端。PHP是一种服务器端脚本语言,主要用于处理服务器端的逻辑,生成动态网页内容。与前端技术相比,PHP更多地用于与数据库交互、处理用户请求以及生成页面内容等后端操作。接下来通过具体的代码示例来说明PHP在后端开发中的应用。首先,我们来看一个简单的PHP代码示例,用于连接数据库并查询数据:
