如何提高hadoop中Short-Circuit Local Reads时的性能及安全性
本文由 ImportNew - Royce Wong 翻译自 Cloudera。如需转载本文,请先参见文章末尾处的转载要求。 大家都知道,apache hadoop的一个关键思想就是移动计算比移动数据更廉价。所以只要可能,我们就乐忠移动计算到数据地方。因此,HDFS通常使用许多的本地读,在
本文由 ImportNew - Royce Wong 翻译自 Cloudera。如需转载本文,请先参见文章末尾处的转载要求。大家都知道,apache hadoop的一个关键思想就是移动计算比移动数据更廉价。所以只要可能,我们就乐忠移动计算到数据地方。因此,HDFS通常使用许多的本地读,在本地机器构造读对象读出数据。

最初,hdfs本地读其实和远程读使用的同一种方式:client端通过TCP 连接DN,并通过DataTransferProtocol传输数据。该方法简单,但是有一些不好的地方。例如,DN需要维护一个线程运行,并为每个client打开的tcp套接字建立连接传输数据。在linux内核中tcp协议是有开销的,同时DataTransferProtocol本身也有开销。这里有优化空间。
本文大家将会了解到一项HDFS新的优化,叫做“secure short-circuit local reads”,学习该优化如何实现并怎样提速本地读的。
HDFS-2246 曾经实现的Short-Circuit LocalReads
HDFS-2246,ndrew Purtell, Suresh Srinivas, Jitendra Nath Pandey, and Benoy Antony等人添加了一项称为“short-circuit local reads”优化。
其关键思想如下:因为客户端和数据在同一个节点,所以没必要再去和DN交互。客户端本身直接就从本地磁盘读出数据。这个性能优化被加入了CDH3u3。

HDFS-2246实现的short-circuit local read 是一个好的开始,但其带来了许多配置上麻烦。系统管理员必须改变DN数据目录权限,允许客户端打开相关文件。还需要定义一个白名单用户,可以使用这个特性。其他用户不允许。通常,这些用户被搞到一个特殊的UNIX 用户组里。
不幸的是,这种权限改变带来了安全漏洞。有这种权限的用户就可以直接浏览所有数据了,不仅是他们需要的数据。简直就是超级用户啊!这个在一些场景下可以接受,比如 HBase用户,但是一般来讲,它还是带来了问题。这不是一个通用的方式。
HDFS-347:让Short-Circuit Local Reads 安全
HDFS-2246的主要问题就是它将DN的所有数据路径直接开放给了客户端。其实,客户端只是想要几个其关心的数据文件。
幸亏Unix提供了可以这样做的机制,文件描述符。HDFS-347使用该机制实现安全的short-circuit local reads. 客户端向DN请求数据时,DN简单地打开blockfile和元数据文件,并直接传给客户端,而不是将路径传给客户端。因为文件描述符是只读的,客户端不能修改接收到的文件。同时不支持对block所在路径的访问,所以也就不能访问其他数据。
Windows 有类似的机制允许将文件描述符在进程间传递。CDH目前还不支持该特性,同时Windows用户可以配置dfs.cient.use.legacy.blockreader.local为true使用legacy block reader。
Cache 文件描述符
HDFS客户端经常多次读取相同的block文件(y尤其对HBase而言)。为了提高这种场景下的本地读,HDFS-2246实现的机制中有一个block 路径的Cache。Cache允许客户端重新打开block文件,而不需要再去访问DN。
相对于路径Cache,新机制实现了一个FileInputStreamCache,缓存文件描述符。优点在于不需要客户端重新打开数据文件。该处实现性能优于老的读取机制。
cache的大小可以通过dfs.client.read.shortcircuit.stream.cache.size调整,cache超时时间通过dfs.client.read.shortcircuit.streams.cache.expiry.ms设定。也可以关掉该cache,设置cache大小为0即可。大多数情况下,默认配置就可以了。如果你面对的是特殊的大规模的工作集和高文件描述符限制,你可以试着提高参数值。
HDFS-347配置
HDFS-347实现的新机制,所有hdfs用户都可以使用该特性,而不是局限于配置的几个用户。也没有必要去修改Unix用户组来设定谁可以访问DN路径。然而,java标准库并不包含支持文件描述符传递的库,所以该特性需要使用JNI。同时需要安装libhadoop.so库.
HDFS-347也需要一个Unix域套接字路径,可通过dfs.domain.socket.path设置。该路径必须安全地阻止无优先级进程进行中间人攻击(MITM攻击,man-in-the-middle attack)。每个套接字路径必须是root拥有或者DN用户拥有,不能使用人人都可以写或者用户组可写方式的路径。
如果你安装cloudera包 rpm,deb,cloudera会创建一个默认的安全的unix域套接字路径。同时会讲libhadoop.so安装到正确路径下。
详细配置信息可以参考 the upstream documentation
性能
新实现到底咋样呢?作者使用 hio_bench程序获取到一些性能统计数据。hiobench github 地址 https://github.com/cmccabe/hiotest。
测试案例运行在8核 intelXeon 2.13 12块磁盘服务器上,集群使用CDH4.3.1,底层使用ext4文件系统。 下图每个值是运行三次的平均值。

在所有测试案例中,HDFS-347实现是最快的,可能归功于FileInputStreamCache.相反HDFS-2246实现会重复打开ext4 块文件多次,打开文件是一个重操作。
short-circuit实现在随机读场景下比顺序读相对于hdfs初始的读取机制有相对优势。部分原因是为short-circuit local reads场景的 高速预读(readahead)还未实现。可以参考HDFS-4697参与相关讨论。
结论
SCR (short-circuit local reads)是hadoop模型下优化的一项极好的案例。他们也有如何解决规模不断增长的挑战,Cloudera目前正挑战在集群中获取每个节点更多性能方向的研究。
如果你正使用CDH4.2 或以上版本,用下新的实现把!
Colin McCabe is a Software Engineer on the Platform team, and a Hadoop Committer.
原文地址:如何提高hadoop中Short-Circuit Local Reads时的性能及安全性, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

如何通过PHP多线程提高数据库查询性能引言:随着互联网的迅猛发展,数据库查询性能成为了开发者面临的重要挑战之一。而PHP作为一种广泛使用的服务器端脚本语言,对于数据库查询也扮演着重要的角色。本文将探讨如何通过PHP多线程技术提高数据库查询性能,以满足高并发请求的需求。一、什么是多线程在讨论如何利用多线程提高数据库查询性能前,我们首先需要了解什么是多线程。通俗

随着数据量的不断增大,传统的数据处理方式已经无法处理大数据时代带来的挑战。Hadoop是开源的分布式计算框架,它通过分布式存储和处理大量的数据,解决了单节点服务器在大数据处理中带来的性能瓶颈问题。PHP是一种脚本语言,广泛应用于Web开发,而且具有快速开发、易于维护等优点。本文将介绍如何使用PHP和Hadoop进行大数据处理。什么是HadoopHadoop是

Java大数据技术栈:了解Java在大数据领域的应用,如Hadoop、Spark、Kafka等随着数据量不断增加,大数据技术成为了当今互联网时代的热门话题。在大数据领域,我们常常听到Hadoop、Spark、Kafka等技术的名字。这些技术起到了至关重要的作用,而Java作为一门广泛应用的编程语言,也在大数据领域发挥着巨大的作用。本文将重点介绍Java在大

哈医大临床药学就业前景如何尽管全国就业形势不容乐观,但药科类毕业生仍然有着良好的就业前景。总体来看,药科类毕业生的供给量少于需求量,各医药公司和制药厂是吸纳这类毕业生的主要渠道,制药行业对人才的需求也在稳步增长。据介绍,近几年药物制剂、天然药物化学等专业的研究生供需比甚至达到1∶10。临床药学专业就业方向:临床医学专业学生毕业后可在医疗卫生单位、医学科研等部门从事医疗及预防、医学科研等方面的工作。就业岗位:医药代表、医药销售代表、销售代表、销售经理、区域销售经理、招商经理、产品经理、产品专员、护

随着数据量的不断增加,大规模数据处理已经成为了企业必须面对和解决的问题。传统的关系型数据库已经无法满足这种需求,而对于大规模数据的存储和分析,Hadoop、Spark、Flink等分布式计算平台成为了最佳选择。在数据处理工具的选择过程中,PHP作为一种易于开发和维护的语言,越来越受到开发者的欢迎。在本文中,我们将探讨如何利用PHP来实现大规模数据处理,以及如

在抖音平台上,用户可能会想要找到自己曾经评论过的视频号内容,以便能够方便地查找或继续参与某个话题的讨论。那么,怎么找到自己评论过的视频号内容呢?一、怎么找到自己评论过的视频号内容?使用个人主页,用户可以通过个人主页查看自己评价过的视频内容。在个人主页中,有一个“评论”选项,点击后可以看到自己所有的评论记录。用户可以利用搜索功能找到自己感兴趣的视频内容。只需在搜索框中输入相关关键词,即可找到与自己评论相关的视频内容。3.通过话题参与:用户可以通过参与话题的方式,找到自己评论过的视频号内容。在话题页
