基于Redis的BloomFilter实战
离线数据处理与实时数据处理有很大的不同,其中一个例子就是去重。在聚数据中,访问UV和购买UV都需要实时的去重。离线处理的时候,我们可以通过count(groupby)或者count(distinct)等方式比较容易的计算出UV,而且不用太担心性能,大不了就是多一点map或者执
离线数据处理与实时数据处理有很大的不同,其中一个例子就是去重。在聚数据中,访问UV和购买UV都需要实时的去重。离线处理的时候,我们可以通过count(groupby)或者count(distinct)等方式比较容易的计算出UV,而且不用太担心性能,大不了就是多一点map或者执行时间久一点。那么在实时计算的时候,我们有什么好的办法来做这个事情呢?
在聚数据中有两种场景:
1,数据的准确性要求高,最好就是完全准确的,例如购买UV。同时交易数据量比较小,聚划算每天的交易笔数仅在百万级别。对于这样的情况,我们采用了基于HBase的过滤。具体做法如下:
建立HBase去重表,对ColumnFamily设置过期时间,如:HColumnDescriptor.setTimeToLive(3*24*60*60);这样3天后的数据将自动删除,以免表过大。然后利用hbase的increment计数,判断计数值是否等于1即可。非常简单粗暴。
2,数据的准确性要求不是很严格,允许有少许的误差,例如访问UV。往往数据量也比较大,聚划算每天的访问UV在千万级别。这种情况我们想到了BloomFilter,也就是本文的重点。
BloomFilter原理:
简单的说就是:通过将一个key的hash值分布到一个大的bit数组上面,判断一个key是否存在时只需判断该的hash对应的bit位是否都是1,如果全是1则表示存在,否则不存在。
优点:性能很高主要在hash算法上面,空间占用小,能够极大的缩小存储空间。
缺点:存在误判。既对应的bit位刚好被其他的key置为1了。
好在误判率是可控的,我们假设kn
对于公式对应的具体原理,个人觉得不必去深究,只需要记住下面两句话,即可将BloomFilter应用自如:
1,如果他告诉你不存在,则一定不存在;
2,如果他告诉你存在,则可能不存在。
因此BloomFilter最理想的应用场景是在一些复杂的查询时,在DB上做一层BloomFilter判断,如果BloomFilter判断不存在,则没必要到DB去查了。顶多就是出现误判时,多到DB查询一下,而这个概率是很低的。
上面说到的BloomFilter还紧紧是单机内存的,在淘宝这个环境下,显然是不适用的。那么我们如何把他变成分布式的呢?看了标题我想你已经知道了,对了,那就是redis。
BloomFilter需要的bit数组与redis的bit操作真是完美契合啊。利用redis的高性能以及通过pipeline将多条bit操作命令批量提交,实现了多机BloomFilter的bit数据共享。唯一需要注意的是redis的bitmap只支持2^32大小,对应到内存也就是512MB,数组的下标最大只能是2^32-1。不过这个限制我们可以通过构建多个redis的bitmap通过hash取模的方式分散一下即可。同时利用上面的公式计算一下:万分之一的误判率,512MB可以放下2亿左右的数据,而目前全网的uv也就8千万,所以,你懂的。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

使用 Redis 指令需要以下步骤:打开 Redis 客户端。输入指令(动词 键 值)。提供所需参数(因指令而异)。按 Enter 执行指令。Redis 返回响应,指示操作结果(通常为 OK 或 -ERR)。

使用Redis进行锁操作需要通过SETNX命令获取锁,然后使用EXPIRE命令设置过期时间。具体步骤为:(1) 使用SETNX命令尝试设置一个键值对;(2) 使用EXPIRE命令为锁设置过期时间;(3) 当不再需要锁时,使用DEL命令删除该锁。

理解 Redis 源码的最佳方法是逐步进行:熟悉 Redis 基础知识。选择一个特定的模块或功能作为起点。从模块或功能的入口点开始,逐行查看代码。通过函数调用链查看代码。熟悉 Redis 使用的底层数据结构。识别 Redis 使用的算法。

在CentOS系统上,您可以通过修改Redis配置文件或使用Redis命令来限制Lua脚本的执行时间,从而防止恶意脚本占用过多资源。方法一:修改Redis配置文件定位Redis配置文件:Redis配置文件通常位于/etc/redis/redis.conf。编辑配置文件:使用文本编辑器(例如vi或nano)打开配置文件:sudovi/etc/redis/redis.conf设置Lua脚本执行时间限制:在配置文件中添加或修改以下行,设置Lua脚本的最大执行时间(单位:毫秒)

使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。
