目录
概述
LRU 数据淘汰机制
TTL 数据淘汰机制
总结
首页 数据库 mysql教程 深入剖析 redis 数据淘汰策略

深入剖析 redis 数据淘汰策略

Jun 07, 2016 pm 04:34 PM
redis 剖析 数据 概述 淘汰 深入 策略

概述 在 redis 中,允许用户设置最大使用内存大小 server.maxmemory,在内存限定的情况下是很有用的。譬如,在一台 8G 机子上部署了 4 个 redis 服务点,每一个服务点分配 1.5G 的内存大小,减少内存紧张的情况,由此获取更为稳健的服务。 redis 内存数据集

概述

在 redis 中,允许用户设置最大使用内存大小 server.maxmemory,在内存限定的情况下是很有用的。譬如,在一台 8G 机子上部署了 4 个 redis 服务点,每一个服务点分配 1.5G 的内存大小,减少内存紧张的情况,由此获取更为稳健的服务。

redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:

  1. volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  4. allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  6. no-enviction(驱逐):禁止驱逐数据

redis 确定驱逐某个键值对后,会删除这个数据并,并将这个数据变更消息发布到本地(AOF 持久化)和从机(主从连接)。

LRU 数据淘汰机制

在服务器配置中保存了 lru 计数器 server.lrulock,会定时(redis 定时程序 serverCorn())更新,server.lrulock 的值是根据 server.unixtime 计算出来的。

另外,从 struct redisObject 中可以发现,每一个 redis 对象都会设置相应的 lru。可以想象的是,每一次访问数据的时候,会更新 redisObject.lru。

LRU 数据淘汰机制是这样的:在数据集中随机挑选几个键值对,取出其中 lru 最大的键值对淘汰。所以,你会发现,redis 并不是保证取得所有数据集中最近最少使用(LRU)的键值对,而只是随机挑选的几个键值对中的。

// redisServer 保存了 lru 计数器
struct redisServer {
    ...
    unsigned lruclock:22;       /* Clock incrementing every minute, for LRU */
    ...
};
// 每一个 redis 对象都保存了 lru
#define REDIS_LRU_CLOCK_MAX ((1<lru */
#define REDIS_LRU_CLOCK_RESOLUTION 10 /* LRU clock resolution in seconds */
typedef struct redisObject {
    // 刚刚好 32 bits
    // 对象的类型,字符串/列表/集合/哈希表
    unsigned type:4;
    // 未使用的两个位
    unsigned notused:2;     /* Not used */
    // 编码的方式,redis 为了节省空间,提供多种方式来保存一个数据
    // 譬如:“123456789” 会被存储为整数 123456789
    unsigned encoding:4;
    unsigned lru:22;        /* lru time (relative to server.lruclock) */
    // 引用数
    int refcount;
    // 数据指针
    void *ptr;
} robj;
// redis 定时执行程序。联想:linux cron
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
    ......
    /* We have just 22 bits per object for LRU information.
     * So we use an (eventually wrapping) LRU clock with 10 seconds resolution.
     * 2^22 bits with 10 seconds resolution is more or less 1.5 years.
     *
     * Note that even if this will wrap after 1.5 years it's not a problem,
     * everything will still work but just some object will appear younger
     * to Redis. But for this to happen a given object should never be touched
     * for 1.5 years.
     *
     * Note that you can change the resolution altering the
     * REDIS_LRU_CLOCK_RESOLUTION define.
     */
    updateLRUClock();
    ......
}
// 更新服务器的 lru 计数器
void updateLRUClock(void) {
    server.lruclock = (server.unixtime/REDIS_LRU_CLOCK_RESOLUTION) &
                                                REDIS_LRU_CLOCK_MAX;
}
登录后复制

TTL 数据淘汰机制

redis 数据集数据结构中保存了键值对过期时间的表,即 redisDb.expires。和 LRU 数据淘汰机制类似,TTL 数据淘汰机制是这样的:从过期时间的表中随机挑选几个键值对,取出其中 ttl 最大的键值对淘汰。同样你会发现,redis 并不是保证取得所有过期时间的表中最快过期的键值对,而只是随机挑选的几个键值对中的。

总结

redis 每服务客户端执行一个命令的时候,会检测使用的内存是否超额。如果超额,即进行数据淘汰。

// 执行命令
int processCommand(redisClient *c) {
    ......
    // 内存超额
    /* Handle the maxmemory directive.
     *
     * First we try to free some memory if possible (if there are volatile
     * keys in the dataset). If there are not the only thing we can do
     * is returning an error. */
    if (server.maxmemory) {
        int retval = freeMemoryIfNeeded();
        if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
            flagTransaction(c);
            addReply(c, shared.oomerr);
            return REDIS_OK;
        }
    }
    ......
}
// 如果需要,是否一些内存
int freeMemoryIfNeeded(void) {
    size_t mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);
    // redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小
    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = zmalloc_used_memory();
    // 从机回复空间大小
    if (slaves) {
        listIter li;
        listNode *ln;
        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            redisClient *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    // server.aof_buf && server.aof_rewrite_buf_blocks
    if (server.aof_state != REDIS_AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }
    // 内存是否超过设置大小
    /* Check if we are over the memory limit. */
    if (mem_used <= server.maxmemory) return REDIS_OK;
    // redis 中可以设置内存超额策略
    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
        return REDIS_ERR; /* We need to free memory, but policy forbids. */
    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;
    while (mem_freed < mem_tofree) {
        int j, k, keys_freed = 0;
        // 遍历所有数据集
        for (j = 0; j < server.dbnum; j++) {
            long bestval = 0; /* just to prevent warning */
            sds bestkey = NULL;
            struct dictEntry *de;
            redisDb *db = server.db+j;
            dict *dict;
            // 不同的策略,选择的数据集不一样
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
            {
                dict = server.db[j].dict;
            } else {
                dict = server.db[j].expires;
            }
            // 数据集为空,继续下一个数据集
            if (dictSize(dict) == 0) continue;
            // 随机淘汰随机策略:随机挑选
            /* volatile-random and allkeys-random policy */
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
            {
                de = dictGetRandomKey(dict);
                bestkey = dictGetKey(de);
            }
            // LRU 策略:挑选最近最少使用的数据
            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;
                    // 随机挑选键值对
                    de = dictGetRandomKey(dict);
                    // 获取键
                    thiskey = dictGetKey(de);
                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);
                    // 计算数据的空闲时间
                    thisval = estimateObjectIdleTime(o);
                    // 当前键值空闲时间更长,则记录
                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }
            // TTL 策略:挑选将要过期的数据
            /* volatile-ttl */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    thisval = (long) dictGetVal(de);
                    /* Expire sooner (minor expire unix timestamp) is better
                     * candidate for deletion */
                    if (bestkey == NULL || thisval < bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }
            // 删除选定的键值对
            /* Finally remove the selected key. */
            if (bestkey) {
                long long delta;
                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
                // 发布数据更新消息,主要是 AOF 持久化和从机
                propagateExpire(db,keyobj);
                // 注意, propagateExpire() 可能会导致内存的分配, propagateExpire() 提前执行就是因为 redis 只计算 dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小,与此同时假设分配空间大于释放空间,就有可能永远退不出这个循环。
                // 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小:
                // propagateExpire(db,keyobj);
                // delta = (long long) zmalloc_used_memory();
                // dbDelete(db,keyobj);
                // delta -= (long long) zmalloc_used_memory();
                // mem_freed += delta;
                /////////////////////////////////////////
                /* We compute the amount of memory freed by dbDelete() alone.
                 * It is possible that actually the memory needed to propagate
                 * the DEL in AOF and replication link is greater than the one
                 * we are freeing removing the key, but we can't account for
                 * that otherwise we would never exit the loop.
                 *
                 * AOF and Output buffer memory will be freed eventually so
                 * we only care about memory used by the key space. */
                // 只计算 dbDelete() 释放内存的大小
                delta = (long long) zmalloc_used_memory();
                dbDelete(db,keyobj);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;
                server.stat_evictedkeys++;
                // 将数据的删除通知所有的订阅客户端
                notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
                    keyobj, db->id);
                decrRefCount(keyobj);
                keys_freed++;
                // 将从机回复空间中的数据及时发送给从机
                /* When the memory to free starts to be big enough, we may
                 * start spending so much time here that is impossible to
                 * deliver data to the slaves fast enough, so we force the
                 * transmission here inside the loop. */
                if (slaves) flushSlavesOutputBuffers();
            }
        }
        // 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回
        if (!keys_freed) return REDIS_ERR; /* nothing to free... */
    }
    return REDIS_OK;
}
登录后复制

捣乱 2014-5-27

http://daoluan.net

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

redis集群是如何实现的 redis集群是如何实现的 Apr 10, 2025 pm 05:27 PM

Redis集群是一种分布式部署模式,允许水平扩展Redis实例,通过节点间通信、哈希槽划分键空间、节点选举、主从复制和命令重定向来实现:节点间通信:通过集群总线实现虚拟网络通信。哈希槽:将键空间划分为哈希槽,确定负责键的节点。节点选举:至少需要三个主节点,通过选举机制确保仅有一个活动主节点。主从复制:主节点负责写请求,从节点负责读请求和数据复制。命令重定向:客户端连接到负责键的节点,节点重定向不正确的请求。故障处理:故障检测、标记下线和重新

redis查询的key怎么唯一 redis查询的key怎么唯一 Apr 10, 2025 pm 07:03 PM

Redis采用五种策略确保键的唯一性:1. 名称空间分隔;2. HASH数据结构;3. SET数据结构;4. 字符串键的特殊字符;5. Lua脚本验证。具体策略的选择取决于数据组织、性能和扩展性需求。

redis事务如何处理 redis事务如何处理 Apr 10, 2025 pm 05:24 PM

Redis 事务确保原子性、一致性、隔离性和持久性(ACID)属性,其运作方式如下:启动事务:使用 MULTI 命令。记录命令:执行任意数量的 Redis 命令。提交或回滚事务:使用 EXEC 命令提交事务,或 DISCARD 命令回滚事务。提交:若无错误,EXEC 命令提交事务,所有命令原子地应用到数据库。回滚:若有错误,DISCARD 命令回滚事务,所有命令被丢弃,数据库状态保持不变。

redis怎么查看所有的key redis怎么查看所有的key Apr 10, 2025 pm 07:15 PM

要查看 Redis 中的所有键,共有三种方法:使用 KEYS 命令返回所有匹配指定模式的键;使用 SCAN 命令迭代键并返回一组键;使用 INFO 命令获取键的总数。

redis底层怎么实现 redis底层怎么实现 Apr 10, 2025 pm 07:21 PM

Redis 使用哈希表存储数据,支持字符串、列表、哈希表、集合和有序集合等数据结构。Redis 通过快照 (RDB) 和追加只写 (AOF) 机制持久化数据。Redis 使用主从复制来提高数据可用性。Redis 使用单线程事件循环处理连接和命令,保证数据原子性和一致性。Redis 为键设置过期时间,并使用 lazy 删除机制删除过期键。

redis zset怎么使用 redis zset怎么使用 Apr 10, 2025 pm 07:27 PM

Redis 有序集合(ZSet)用于存储有序元素集合,并按关联分数进行排序。ZSet 的用法步骤包括:1. 创建 ZSet;2. 添加成员;3. 获取成员分数;4. 获取排名;5. 获取排名范围的成员;6. 删除成员;7. 获取元素个数;8. 获取分数范围内的成员个数。

redis如何查看版本号 redis如何查看版本号 Apr 10, 2025 pm 05:57 PM

要查看 Redis 版本号,可以使用以下三种方法:(1) 输入 INFO 命令,(2) 使用 --version 选项启动服务器,(3) 查看配置文件。

redis如何做内存优化 redis如何做内存优化 Apr 10, 2025 pm 06:24 PM

为了优化 Redis 内存使用,可以采取以下措施:使用合适的数据结构,例如散列表、列表、压缩列表或哈希表。启用压缩功能以压缩重复数据。使用对象共享来存储相似的对象。限制键的数量并使用哈希标签对相关键进行分组。删除过期键并使用持久化来防止数据丢失。使用 RDB 或 AOF 作为持久化方式,监控内存使用情况并使用 Redis 内存服务器。使用空间效率高的数据结构、禁用惰性过期功能并控制 zset 中的压缩列表条目数。

See all articles