LinkedIn数据架构剖析
LinkedIn是当今最流行的专业社交网站之一,本文描述了LinkedIn是如何管理数据的。如你对文中的观点有异议亦或文中有遗漏的部分请随时告诉我。 LinkedIn.com数据用例 下面是一些数据用例,可能我们在浏览LinkedIn网页时都已经看到过了。 更新后的个人资料后几
LinkedIn是当今最流行的专业社交网站之一,本文描述了LinkedIn是如何管理数据的。如你对文中的观点有异议亦或文中有遗漏的部分请随时告诉我。
LinkedIn.com数据用例
下面是一些数据用例,可能我们在浏览LinkedIn网页时都已经看到过了。- 更新后的个人资料后几乎可以实时的出现在招聘搜索页面
- 更新后的个人资料后几乎可以实时的出现在人脉网页
- 分享一个更新,可以近实时的出现在新闻feed页面
- 然后会更新到其他只读页面,像”你可能认识的人“、”看过我资料的人“、”相关搜索“等。
令人震惊的是,如果我们使用较好的宽带,这些页面可以在数毫秒内完成加载!让我们向LinkedIn工程师团队致敬!
早期的LinkedIn数据架构
像其它初创公司一样,LinkedIn 早期也是通过单个的RDBMS (关系型数据库管理系统)的几张表来保存用户资料和人脉关系。是不是很原始?后来这个RDMBS扩展出两个额外的数据库系统,其中一个用来支撑用户个人资料的全文搜索,另一个用来实现社交图。这两个数据库通过Databus来取得最新数据。Databus是一个变化捕捉系统,它的主要目标就是捕捉那些来至可信源(像Oracle)中数据集的变更,并且把这些变化更新到附加数据库系统中。 但是,没过多久这种架构就已经很难满足网站的数据需求了。因为按照Brewerd的CAP理论想要同时满足下面的条件看似不太可能: 一致性:所有应用在同一时刻看到相同的数据 可用性:保证每个请求都能收到应答,无论成功或失败 分区容错性:部分系统的消息丢失或失败不影响系统系统整体的正常运行根据上面的法则,LinkedIn工程师团队实现了他们称作为时间线一致性(或者说近线系统的最终一致性,下面会解释)以及另外两个特性:可用性和分区容错性。下面介绍目前LinkedIn的数据架构。
LinkedIn如今的数据架构
如果要支撑在不到一秒钟内处理数百万用户的相关事务,上面的数据架构已经明显不足了。因此,LinkedIn 工程师团队提出了三段式(three-phase)数据架构,由在线、离线以及近线数据系统组成。总体上讲,LinkedIn数据被存储在如下几种不同形式的数据系统中(看下面的图):-
RDBMS
- Oracle
- MySQL(作为Espresso的底层数据存储)
-
RDBMS
- Espresso(LinkedIn自己开发的文档型NoSQL数据存储系统)
- Voldemart (分布式Key-value存储系统)
- HDFS (存放Hadoop map-reduce任务的数据)
-
Caching
- Memcached
-
基于Lucene的索引
- 存放查询、关系图等功能数据的Lucene 索引
- Espresso使用的索引
图:LinkedIn数据库系统包括了DataBus、NoSQL、RDBMS以及Indexes
在线数据库系统
在线系统处理用户的实时互动;主数据库像Oracle就属于这一类别。主数据存储用来支撑用户的写操作和少量的读操作。以Orcale为例,Oracle master会执行所有的写操作。最近,LinkedIn正在开发另一个叫做“Espresso”的数据系统来满足日益复杂的数据需求,而这些数据看似不应从像Oracle这类的RDBMS中获取。他们能否淘汰所有或大部分的Oracle并将数据完全转移到像Espresso这类的NoSQL数据存储系统中去?让我们拭目以待。Espresso是一个支持水平扩展、索引、时间线一致性、基于文档且高可用的NoSQL数据仓库,旨在代替支撑公司网页操作所使用的传统Oracle数据库。设计它的初衷是为了提高LinkedIn的InMail消息服务的可用性。目前有如下一些应用在使用Espresso作为可信源系统。能够看到NoSQL数据存储是如果被用来处理如此众多应用的数据需求很是神奇!
- 成员间消息,
- 社交动作,如:更新
- 文章分享
- 用户个人资料
- 公司资料
- 新闻文章
离线数据库系统
离线系统主要包括Hadoop和一个Teradata数据仓库,用来执行批处理和分析类的工作。之所以被称为离线是因为它对数据执行的的批处理操作。?Apache Azkaban被用来管理Hadoop和ETL任务,这些任务从主可信源系统获取数据后交由map-reduce处理,处理结果被保存在HDFS,然后通知’消费者‘(例如:Voldemart)通过合适的方式来获取这些数据并切换索引来保证能获取到最新的数据。近线数据库系统(时间线一致性)
近线系统的目标是为了实现时间线一致性(或最终一致性),它处理类似’你可能认识的人(只读数据集)‘、搜索以及社交图这些功能,这些功能的数据会持续更新,但它们对延迟性的要求并不像在线系统那样高。下面是几种不同类型的近线系统:- Voldemart,一个Key-Value存储系统,为系统中的只读页面提供服务。Voldemart的数据来源于Hadoop框架(Hadoop Azkaban:编排Hadoop map-reduce任务的执行计划)。这就是近线系统,它们从类似Hadoop的离线系统获取数据。下面这些页面的数据都是来自于Voldemart:
- 你可能认识的人
- 看过本页面的人还在看
- 相关搜索
- 你可能感兴趣的工作
- 你可能感兴趣的事件
- 下面是几种不同的索引,这些索引由Databus-一个变化数据捕捉系统-来更新的:
- 供SeaS(Search-as-a-Service)使用的’成员搜索索引‘。当你在LinkedIn上搜索不同的成员时,这些数据就是来自于搜索索引。通常这个功能对招聘人员的帮助很大。
- 社交图索引帮助在人们的人脉关系中显示成员以及关系。通过这个索引用户几乎可以实时的得到网络关系的变化。
- 通过读复制集获取到的成员资料数据。这些数据会被’标准化服务‘访问。读复制集是对源数据库的复制,这样能使源数据库的更新同步到这些复制集上面。增加读复制集的最主要原因是能够通过将读操查询分散到读复制集上来减轻源数据库(执行用户发起的写操作)的压力。

用数据用例来展示它们是如何工作的
假如你更新了你个人资料中的最新技能和职位。你还接受了一个连接请求。那么在系统内部到底发生了什么:
- 将更新写入Oracle Master数据库
- 然后Databus做了如下一系列奇妙的工作来实现时间线一致性:
- 将资料变更,如最新技能和职位信息,更新到标准化服务。
- 将上面提到的变更更新到搜索索引服务。
- 将关系变更更新到图索引服务。
数据架构经验
如果要设计一个像LinkedIn.com一样的支持数据一致性、高扩展性且高可用性的数据架构,可以借鉴下面的经验:- 数据库读写分离:你应当计划两种数据库,一种用来执行写操作的可以称为“可信源”系统,另一种执行读操作的可以称为派生数据库系统。这里的经验法则就是将由用户发起的写操作和用户读操作使用的数据库区分开来。
-
派生数据库系统:用户的读操作应该被分配到派生数据库或者读复制集上去。而派生数据库系统则可以建立在下面的系统之上:
- Lucene 索引
- NoSQL数据存储,例如:Voldemart、Redis、Cassandra、MongoDB等。
- 对于用户的读操作,应该尽量从主可信源数据库系统创建索引或者基于key-value的数据(来源于Hadoop map-reduce之类的系统),并且将每次由用户发起的被写入主可信源系统的变更一并更新到这些索引或派生数据(key-value)。
- 为确保派生数据库系统的数据是最新的,你可以选择应用复写(application-dual writes),即在应用层同时写入主数据库和派生数据库系统,或日志挖掘(读取通过批处理任务得到的主数据存储系统的事务提交日志)。
- 创建派生数据时,你可以针对主数据集或者变更数据集执行基于Hadoop的map-reduce任务,然后更新HDFS并且通知派生数据存储系统(类似Voldemart的NoSQL存储)来取走数据。
- 对于数据一致性来说,你可以以将这些数据存储库创建为分布式系统,集群中的每个节点又都包含主从节点。所有节点都可以创建水平扩展的数据Shards。
- 为了保证这些分布式数据存储系统正常运行时间最大化,你可以使用像Apache Helix这一类的集群管理工具。
参考文献
- Siddarth Anand LinkedIn Data Infrastructure paper
- https://github.com/linkedin/databus
- http://gigaom.com/2013/03/03/how-and-why-linkedin-is-becoming-an-engineering-powerhouse/
- http://highscalability.com/blog/2012/3/19/linkedin-creating-a-low-latency-change-data-capture-system-w.html
- 转自:http://blog.jobbole.com/69344/
原文地址:LinkedIn数据架构剖析, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,

这周,由OpenAI、微软、贝佐斯和英伟达投资的机器人公司FigureAI宣布获得接近7亿美元的融资,计划在未来一年内研发出可独立行走的人形机器人。而特斯拉的擎天柱也屡屡传出好消息。没人怀疑,今年会是人形机器人爆发的一年。一家位于加拿大的机器人公司SanctuaryAI最近发布了一款全新的人形机器人Phoenix。官方号称它能以和人类一样的速率自主完成很多工作。世界上第一台能以人类速度自主完成任务的机器人Pheonix可以轻轻地抓取、移动并优雅地将每个对象放置在它的左右两侧。它能够自主识别物体的

多模态文档理解能力新SOTA!阿里mPLUG团队发布最新开源工作mPLUG-DocOwl1.5,针对高分辨率图片文字识别、通用文档结构理解、指令遵循、外部知识引入四大挑战,提出了一系列解决方案。话不多说,先来看效果。复杂结构的图表一键识别转换为Markdown格式:不同样式的图表都可以:更细节的文字识别和定位也能轻松搞定:还能对文档理解给出详细解释:要知道,“文档理解”目前是大语言模型实现落地的一个重要场景,市面上有很多辅助文档阅读的产品,有的主要通过OCR系统进行文字识别,配合LLM进行文字理
