InnoDB memcached插件vs原生memcached对比性能测试
MySQL 5.6开始支持InnoDB memcached插件,也就是可以通过SQL高效读写memcached里的缓存内容,也支持用原生的memcache协议读写,并且可以实现缓存数据持久化,以及crash recovery、mysql replication、触发器、存储过程等众多特性,详细介绍可以查看:Benefit
MySQL 5.6开始支持InnoDB memcached插件,也就是可以通过SQL高效读写memcached里的缓存内容,也支持用原生的memcache协议读写,并且可以实现缓存数据持久化,以及crash recovery、mysql replication、触发器、存储过程等众多特性,详细介绍可以查看:Benefits of the InnoDB / memcached Combination。看起来非常诱人,那就测试下看看吧,是驴子是马拉出来溜溜便知。
- 环境准备
测试机 | DELL PE R710 |
CPU | E5620? @ 2.40GHz(4 core, 8 threads, L3 Cache 12 MB) * 2 |
内存 | 48G(8G * 6) |
RAID卡 | PERC H700 Integrated, 512MB, BBU, 12.10.1-0001 |
系统 | Red Hat Enterprise Linux Server release 6.4 (Santiago) |
内核 | 2.6.32-358.el6.x86_64 #1 SMP |
raid级别 | raid 5(10K RPM SAS 300G * 6) |
文件系统 | xfs |
硬盘 | 10K RPM SAS 300G * 6, 1 hotspare |
- 测试方案
方案一 | server端运行InnoDB MC,本地/远程调用memslap执行benchmark |
方案二 | server端运行Native MC,本地/远程调用memslap执行benchmark |
- 测试脚本
cat memslap_run.sh #!/bin/sh . ~/.bash_profile > /dev/null 2>&1 cd /home/mc-bench exec 3>&1 4>&2 1>> memcache_memslap_${RANDOM}.log 2>&1 #不断循环 while [ 1 ] do #并发线程数 4 ~ 256 for THREAD in 4 8 16 32 64 128 256 do #每种并发测试5次 count=1 max=5 while [ $count -le ${max} ] do #取样 echo "memstat" memstat # --flush 每次测试完毕钱,都先清空数据 # --binary 采用binary模式 # 初始化数据: 5000000, 每个并发线程存取数据量: 100000 # 并发256线程时, 总数据量可达 30,600,000 # 未指定 --test 选项,默认是进行 set 测试 memslap --server=mc_server:11211 --concurrency=${THREAD} --execute-number=100000 --initial-load=5000000 --flush --binary count=`expr ${count} + 1` #每次测试完毕后,都休息2分钟,等待服务器恢复空负载 if [ ${count} -lt ${max} ] ; then sleep 120 fi echo "" echo "" done done done
- 测试结果
1. 写MC
? ? ? ? ? ? ? ?线程数 耗时 |
256 | 128 | 64 | 32 | 16 | 8 | 4 |
NativeMC(单位:1秒) | 104.315 | 47.646 | 24.486 | 12.162 | 6.351 | 5.525 | 5.078 |
InnoDBMC(单位:100秒) | 339.1431 | 68.11128 | 27.67265 | 11.26917 | 4.968556 | 2.24988 | 1.104334 |
直接以曲线图方式对比:
nativemc-vs-innodbmc-benchmark-02-set-result-20130828
2. 读MC
??????? 线程数 耗时 |
4线程并发,2千万记录 |
本地Native MC | 198.5016 |
本地InnoDB MC | 327.239 |
远程Native MC | 846.286 |
远程InnoDB MC | 912.467 |
曲线图方式对比:
nativemc-vs-innodbmc-benchmark-03-get-result-20130828
- 结论
InnoDB MC看起来很美好,现实很骨感,其并发4线程写数据需呀的耗时,和原生memcached的256线程相当,差的不是一丁半点啊,还有很大优化空间。
而如果是缓存只读,InnoDB MC本地读取的效率大概是原生memcached的2/3,如果是远程读取,则相当于是本地读取效率的1/4 ~ 1/3。
- 建议应用场景
鉴于上面的测试结果,建议将InnoDB MC这么来用:
1. 数据写入通过触发器(trigger)或者调度器(event scheduler)将待缓存数据同步到InnoDB MC缓存表中;
2. 以memcache API方式,通过本地/远程读取InnoDB MC中的缓存记录;
3. 尽可能减少通过远程方式往InnoDB MC写缓存数据;
原文地址:InnoDB memcached插件vs原生memcached对比性能测试, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

当前被币圈看好的潜力币除了SOL币还有BCH币,SOL是Solana区块链平台的原生代币,BCH是BitcoinCash项目的代币,它是比特币的一个分叉货币。因为具有不同的技术特点、应用场景和发展方向,投资者在二者之前做出选择也比较困难,就想通过分析SOL币和BCH那个更有潜力?再进行投资。但币种的比较是要根据市场、发展前景、项目实力等方面综合分析的。接下来小编为大家详细说说。SOL币和BCH那个更有潜力?相较而言SOL币更有潜力,确定SOL币和BCH那个更有潜力是一个复杂的问题,因为这取决于许

Windows10与Windows11性能对比:哪个更胜一筹?随着科技的不断发展和进步,操作系统也在不断更新和升级。微软公司作为全球最大的操作系统开发商之一,其发布的Windows系列操作系统一直备受用户关注。在2021年,微软发布了Windows11操作系统,这引发了广泛的讨论和关注。那么,究竟Windows10与Windows11在性能方面有何不同,哪个

一直以来,Windows操作系统一直是人们在个人电脑上使用最为广泛的操作系统之一,而Windows10长期以来一直是微软公司的旗舰操作系统,直到最近微软推出了全新的Windows11系统。随着Windows11系统的推出,人们对于Windows10和Windows11系统之间的性能差异开始感兴趣,究竟两者之间哪一个更胜一筹呢?首先,让我们来看一下W

Ollama是一款超级实用的工具,让你能够在本地轻松运行Llama2、Mistral、Gemma等开源模型。本文我将介绍如何使用Ollama实现对文本的向量化处理。如果你本地还没有安装Ollama,可以阅读这篇文章。本文我们将使用nomic-embed-text[2]模型。它是一种文本编码器,在短的上下文和长的上下文任务上,性能超越了OpenAItext-embedding-ada-002和text-embedding-3-small。启动nomic-embed-text服务当你已经成功安装好o

不同Java框架的性能对比:RESTAPI请求处理:Vert.x最佳,请求速率达SpringBoot2倍,Dropwizard3倍。数据库查询:SpringBoot的HibernateORM优于Vert.x及Dropwizard的ORM。缓存操作:Vert.x的Hazelcast客户机优于SpringBoot及Dropwizard的缓存机制。合适框架:根据应用需求选择,Vert.x适用于高性能Web服务,SpringBoot适用于数据密集型应用,Dropwizard适用于微服务架构。

PHP数组键值翻转方法性能对比表明:array_flip()函数在大型数组(超过100万个元素)下比for循环性能更优,耗时更短。手动翻转键值的for循环方法耗时相对较长。

优化C++多线程性能的有效技术包括:限制线程数量,避免争用资源。使用轻量级互斥锁,减少争用。优化锁的范围,最小化等待时间。采用无锁数据结构,提高并发性。避免忙等,通过事件通知线程资源可用性。

函数对C++程序性能的影响包括函数调用开销、局部变量和对象分配开销:函数调用开销:包括堆栈帧分配、参数传递和控制权转移,对小函数影响显着。局部变量和对象分配开销:大量局部变量或对象创建和销毁会导致堆栈溢出和性能下降。
