首页 数据库 mysql教程 全文索引对索引选择的干扰

全文索引对索引选择的干扰

Jun 07, 2016 pm 05:36 PM

mysql全文索引使用得到,对性能提升有一定帮助;但是,若使用不得到,将会是异常灾难;mysql全文索引对整个优化器的索引选择都有干扰。看我生产环境下优化过的一

mysql全文索引使用得到,对性能提升有一定帮助;但是,若使用不得到,将会是异常灾难;mysql全文索引对整个优化器的索引选择都有干扰。看我生产环境下优化过的一条sql

SELECT DISTINCT pc.products_id, pd.products_name,p.products_date_added,pso.products_id FROM products_to_categories AS pc LEFT JOIN products_description AS pd ON pd.products_id=pc.products_id LEFT JOIN products AS p ON p.products_id=pd.products_id LEFT JOIN specials AS sps ON sps.products_id=p.products_id LEFT JOIN temp_products_7days_orders_amount AS 7days ON 7days.products_id=pc.products_id LEFT JOIN products_realtime_quantity AS prq ON prq.sku_or_poa = p.products_model LEFT JOIN products_stockout AS pso ON pso.products_id=pd.products_id WHERE p.products_status=1 AND (prq.msg != 'Temporary out stock.' OR ISNULL(prq.msg)) AND pc.categories_id IN ( 153,323,1055,1241,1431) AND MATCH(pd.products_name) AGAINST('*iphone*' IN BOOLEAN MODE) AND MATCH(pd.products_name) AGAINST('*c*' IN BOOLEAN MODE) ORDER BY 7days.orders_sum DESC

这条语句执行非常慢,经常出现卡住情况,有时候发现执行需要几分钟,而结果才几条,该语句也为涉及到大结果运算,各种连表条件上上都有索引。唯一特殊的地方就是pd.products_name为全文索引,而且执行的过程中pc.categories_id优先级高于pd.products_name全文索引,导致使用了pc.categories_id索引。按理来讲,这样也没有多大关系。但是explain后发现了问题

+----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+ | 1 | SIMPLE | pc | range | PRIMARY,categories_id | categories_id | 4 | NULL | 307 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | pd | fulltext | PRIMARY,products_name | products_name | 0 | | 1 | Using where | | 1 | SIMPLE | p | eq_ref | PRIMARY | PRIMARY | 4 | banggood.pd.products_id | 1 | Using where | | 1 | SIMPLE | sps | ref | products_id | products_id | 4 | banggood.pd.products_id | 16 | Using index | | 1 | SIMPLE | 7days | ref | PRIMARY | PRIMARY | 4 | banggood.p.products_id | 1032 | | | 1 | SIMPLE | prq | ref | ix_prg_sku_or_poa | ix_prg_sku_or_poa | 152 | banggood.p.products_model | 10 | Using where | | 1 | SIMPLE | pso | eq_ref | PRIMARY | PRIMARY | 4 | banggood.pd.products_id | 1 | Using index | +----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+

我们发现驱动表示pc表,使用了categories_id索引,可能优化器优先选择了它,但是再看pd表,

按理来讲,这个时候pd表应该使用products_id索引,也就是这个表的primary key,但是优化器却选择了products_name全文索引,坑爹了!

profiling这条语句,执行时间为2分钟以上

+-------------------------+------------+-----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +-------------------------+------------+-----------+------------+--------------+---------------+ | starting | 0.000415 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000011 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000056 | 0.001000 | 0.000000 | 0 | 0 | | checking permissions | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000009 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000225 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000029 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000138 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000046 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.001115 | 0.001000 | 0.000000 | 0 | 0 | | preparing | 0.001246 | 0.002000 | 0.000000 | 0 | 0 | | FULLTEXT initialization | 0.000088 | 0.000000 | 0.000000 | 0 | 0 | | Creating tmp table | 0.000057 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Copying to tmp table | 120.430834 | 81.227651 | 38.749110 | 1112 | 0 | | Sorting result | 0.000058 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000041 | 0.001000 | 0.000000 | 0 | 0 | | query end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | closing tables | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.008546 | 0.000000 | 0.007999 | 0 | 0 | | logging slow query | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | +-------------------------+------------+-----------+------------+--------------+---------------+

看到Copying to tmp table占据了大量的cpu运算。


看来,mysql优化器太弱了,又要我们强制使用索引了!force index(primary) ,强制使用pd表的主键

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

与MySQL中使用索引相比,全表扫描何时可以更快? 与MySQL中使用索引相比,全表扫描何时可以更快? Apr 09, 2025 am 12:05 AM

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

说明InnoDB全文搜索功能。 说明InnoDB全文搜索功能。 Apr 02, 2025 pm 06:09 PM

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

可以在 Windows 7 上安装 mysql 吗 可以在 Windows 7 上安装 mysql 吗 Apr 08, 2025 pm 03:21 PM

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

mysql:简单的概念,用于轻松学习 mysql:简单的概念,用于轻松学习 Apr 10, 2025 am 09:29 AM

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

InnoDB中的聚类索引和非簇索引(次级索引)之间的差异。 InnoDB中的聚类索引和非簇索引(次级索引)之间的差异。 Apr 02, 2025 pm 06:25 PM

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

mysql用户和数据库的关系 mysql用户和数据库的关系 Apr 08, 2025 pm 07:15 PM

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

mysql 和 mariadb 可以共存吗 mysql 和 mariadb 可以共存吗 Apr 08, 2025 pm 02:27 PM

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

说明不同类型的MySQL索引(B树,哈希,全文,空间)。 说明不同类型的MySQL索引(B树,哈希,全文,空间)。 Apr 02, 2025 pm 07:05 PM

MySQL支持四种索引类型:B-Tree、Hash、Full-text和Spatial。1.B-Tree索引适用于等值查找、范围查询和排序。2.Hash索引适用于等值查找,但不支持范围查询和排序。3.Full-text索引用于全文搜索,适合处理大量文本数据。4.Spatial索引用于地理空间数据查询,适用于GIS应用。

See all articles