MySQl优化千万数据级快速分页sql语句
现在我们使用mysql对数据库分页就是直接使用limit了,这个是没有错误了,如果几万条数据没一种问题,如果是千万条记录你就会想死的心都有了,下面我来给各位朋友分析
数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。
最后collect 为 10万条记录,表占用硬盘1.6G。OK ,看下面这条sql语句:
代码如下 | 复制代码 |
id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的 select id,title from collect limit 90000,10; 从9万条开始,结果? |
8-9秒完成,my god 哪出问题了????其实要优化这条数据,网上找得到答案。看下面一条语句:
代码如下 | 复制代码 |
select id from collect order by id limit 90000,10; |
很快,0.04秒就OK。 为什么?因为用了id主键做索引当然快。网上的改法是:
代码如下 | 复制代码 |
select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10; |
这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句
代码如下 | 复制代码 |
select id from collect where vtype=1 order by id limit 90000,10; 很慢,用了8-9秒! |
大这看到最后这一条使用了9秒左右的时间是不是想死的心都有啊,那么有没有办法来解决这个问题呢。
你直接 select id from collect where vtype=1 limit 1000,10; 是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。从这里开始有人 提出了分表的思路,这个和discuz 论坛是一样的思路。思路如下:
建一个索引表: t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。 是否可行呢?实验下就知道了。
10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用
代码如下 | 复制代码 |
select id from t where vtype=1 order by id limit 90000,10; |
很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。
加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?错!因为我们的limit还是9万,所以快。给个大的,90万开始
代码如下 | 复制代码 |
select id from t where vtype=1 order by id limit 900000,10; 看看结果,时间是1-2秒! |
why ?? 分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊? 可是我们高估了mysql 的智能,他不是商务,事实证明定长和非定长对limit影响不大? 怪不得有人说 discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!
难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限???
答案是: NO !!!! 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!
好了,我们的测试又回到 collect表,开始测试结论是: 30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!
答案就是:复合索引! 有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?开始的select id from collect order by id limit 90000,10; 这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。然后测试
代码如下 | 复制代码 | ||||
综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键! |
完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!
好了,回到原题,如何将上面的研究成功快速应用于开发呢?如果用复合查询,我的轻量级框架就没的用了。分页字符串还得自己写,那多麻烦?这里再看一个例子,思路就出来了:
代码如下 | 复制代码 |
select * from collect where id in (9000,12,50,7000); 竟然 0秒就可以查完! |
mygod ,mysql 的索引竟然对于in语句同样有效!看来网上说in无法用索引是错误的!
有了这个结论,就可以很简单的应用于轻量级框架了:
代码如下:
echo $strpage;
通过简单的变换,其实思路很简单:1)通过优化索引,找出id,并拼成 "123,90000,12000" 这样的字符串。2)第2次查询找出结果。
小小的索引+一点点的改动就使mysql 可以支持百万甚至千万级的高效分页!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

MySQL支持四种索引类型:B-Tree、Hash、Full-text和Spatial。1.B-Tree索引适用于等值查找、范围查询和排序。2.Hash索引适用于等值查找,但不支持范围查询和排序。3.Full-text索引用于全文搜索,适合处理大量文本数据。4.Spatial索引用于地理空间数据查询,适用于GIS应用。
