漫谈数据挖掘从入门到进阶
做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。 入门: 数据挖掘入门的书籍,中文的大体有这些: JiaweiHan的《数据挖掘概念与技术》
做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。
入门:
数据挖掘入门的书籍,中文的大体有这些:
Jiawei Han的《数据挖掘概念与技术》
Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》
Tom Mitchell的《机器学习》
TOBY SEGARAN的《集体智慧编程》
Anand Rajaraman的《大数据》
Pang-Ning Tan的《数据挖掘导论》
Matthew A. Russell的《社交网站的数据挖掘与分析》
很多人的第一本数据挖掘书都是Jiawei Han的《数据挖掘概念与技术》,这本书也是我们组老板推荐的入门书(我个人觉得他之所以推荐是因为Han是他的老师)。其实我个人来说并不是很推荐把这本书。这本书什么都讲了,甚至很多书少有涉及的一些点比如OLAP的方面都有涉猎。但是其实这本书对于初学者不是那么友好的,给人一种教科书的感觉,如果你有大毅力读完这本书,也只能获得一些零碎的概念的认识,很难上手实际的项目。
我个人推荐的入门书是这两本:TOBY SEGARAN的《集体智慧编程》和Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》
《集体智慧编程》很适合希望了解数据挖掘技术的程序员,这本书讲述了数据挖掘里面的很多实用的算法,而且最重要的是其讲述的方式不是像Han那种大牛掉书袋的讲法,而是从实际的例子入手,辅以python的代码,让你很快的就能理解到这种算法能够应用在哪个实际问题上,并且还能自己上手写写代码。唯一的缺点是不够深入,基本没有数学推导,而且不够全面,内容不够翔实。不过作为一本入门书这些缺点反而是帮助理解和入门的优点。
推荐的另一本《数据挖掘 实用机器学习技术》则相对上一本书要稍微难一点,不过在容易理解的程度上依然甩Han老师的书几条街,其作者就是著名的Weka的编写者。整本书的思想脉络也是尽可能的由易到难,从简单的模型入手扩展到现实生活中实际的算法问题,最难能可贵的是书的最后还稍微讲了下如何使用weka,这样大家就能在学习算法之余能够用weka做做小的实验,有直观的认识。
看完上述两本书后,我觉得大体数据挖掘就算有个初步的了解了。往后再怎么继续入门,就看个人需求了。
如果是只是想要稍微了解下相关的技术,或者作为业余爱好,则可随便再看看Anand Rajaraman的《大数据》以及Matthew A. Russell的《社交网站的数据挖掘与分析》。前者是斯坦福的"Web挖掘"这门课程的材料基础上总结而成。选取了很多数据挖掘里的小点作为展开的,不够系统,但讲的挺好,所以适合有个初步的了解后再看。后者则亦是如此,要注意的是里面很多api因为GFS的缘故不能直接实验,也是个遗憾
如果是继续相关的研究学习,我认为则还需要先过一遍Tom Mitchell的《机器学习》。这本书可以看做是对于十多年前的机器学习的一个综述,作者简单明了的讲述了很多流行的算法(十年前的),并且对于各个算法的适用点和特点都有详细的解说,轻快地在一本薄薄的小书里给了大家一个机器学习之旅。
进阶:
进阶这个话题就难说了,毕竟大家对于进阶的理解各有不同,是个仁者见仁的问题。就我个人来说,则建议如下展开:
视频学习方面:
可以看看斯坦福的《机器学习》这门课程的视频,最近听说网易公开课已经全部翻译了,而且给出了双语字幕,更加容易学习了^_^
书籍学习方面:
我个人推荐的是这样:可以先看看李航的《统计学习方法》,这本书着重于数学推导,网站空间,能让我们很快的对于一些算法的理解更加深入。
有了上面这本书的基础,就可以开始啃一些经典名著了。这些名著看的顺序可以不分先后,也可以同时学习:
Richard O. Duda的《模式分类》这本书是力荐,很多高校的数据挖掘导论课程的教科书便是这本(也是我的数据挖掘入门书,很有感情的)。如果你不通读这本书,你会发现在你研究很多问题的时候,甚至一些相对简单的问题(比如贝叶斯在高斯假设下为什么退化成线性分类器)都要再重新回头读这本书。
Christopher M. Bishop的《Pattern Recognition And Machine Learning》这本书也是经典巨著,整本书写的非常清爽。
《The Elements of Statistical Learning》这本书有句很好的吐槽“机器学习 -- 从入门到精通”可以作为这本书的副标题。可以看出这本书对于机器学习进阶的重要性。值得一说的是这本书虽然有中文版,但是翻译之烂也甚是有名,听说是学体育的翻译的。
Hoppner, Frank的《Guide to Intelligent Data Analysis》这本书相对于上面基本经典巨著并不出名,但是写的甚好,是knime官网上推荐的,标榜的是解决实际生活中的数据挖掘问题,讲述了CRISP-DM标准化流程,每章后面给出了R和knime的应用例子。
以前写过的读书笔记
项目方面:

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Diffusion不仅可以更好地模仿,而且可以进行「创作」。扩散模型(DiffusionModel)是一种图像生成模型。与此前AI领域大名鼎鼎的GAN、VAE等算法,扩散模型另辟蹊径,其主要思想是一种先对图像增加噪声,再逐步去噪的过程。其中如何去噪还原原图像是算法的核心部分。最终算法能够从一张随机的噪声图像中生成图像。近年来,生成式AI的惊人增长将文本转换为图像生成、视频生成等领域的许多令人兴奋的应用提供了支持。这些生成工具背后的基本原理是扩散的概念,这是一种特殊的采样机制,克服了以前的方法中被

Kimi:一句话,十几秒钟,一份PPT就新鲜出炉了。PPT这玩意儿,可太招人烦了!开个碰头会,要有PPT;写个周报,要做PPT;拉个投资,要展示PPT;就连控诉出轨,都得发个PPT。大学更像是学了个PPT专业,上课看PPT,下课做PPT。或许,37年前丹尼斯・奥斯汀发明PPT时也没想到,有一天PPT竟如此泛滥成灾。吗喽们做PPT的苦逼经历,说起来都是泪。「一份二十多页的PPT花了三个月,改了几十遍,看到PPT都想吐」;「最巅峰的时候,一天做了五个PPT,连呼吸都是PPT」;「临时开个会,都要做个

北京时间6月20日凌晨,在西雅图举办的国际计算机视觉顶会CVPR2024正式公布了最佳论文等奖项。今年共有10篇论文获奖,其中2篇最佳论文,2篇最佳学生论文,另外还有2篇最佳论文提名和4篇最佳学生论文提名。计算机视觉(CV)领域的顶级会议是CVPR,每年都会吸引大量研究机构和高校参会。据统计,今年共提交了11532份论文,2719篇被接收,录用率为23.6%。根据佐治亚理工学院对CVPR2024的数据统计分析,从研究主题来看,论文数量最多的是图像和视频合成与生成(Imageandvideosyn

C语言作为一门广泛应用的编程语言,对于想从事计算机编程的人来说是必学的基础语言之一。然而,对于初学者来说,学习一门新的编程语言可能会有些困难,尤其是缺乏相关的学习工具和教材。在本文中,我将介绍五款帮助初学者入门C语言的编程软件,帮助你快速上手。第一款编程软件是Code::Blocks。Code::Blocks是一个免费的开源集成开发环境(IDE),适用于

标题:技术入门者必看:C语言和Python难易程度解析,需要具体代码示例在当今数字化时代,编程技术已成为一项越来越重要的能力。无论是想要从事软件开发、数据分析、人工智能等领域,还是仅仅出于兴趣学习编程,选择一门合适的编程语言是第一步。而在众多编程语言中,C语言和Python作为两种广泛应用的编程语言,各有其特点。本文将对C语言和Python的难易程度进行解析

我们知道LLM是在大规模计算机集群上使用海量数据训练得到的,本站曾介绍过不少用于辅助和改进LLM训练流程的方法和技术。而今天,我们要分享的是一篇深入技术底层的文章,介绍如何将一堆连操作系统也没有的「裸机」变成用于训练LLM的计算机集群。这篇文章来自于AI初创公司Imbue,该公司致力于通过理解机器的思维方式来实现通用智能。当然,将一堆连操作系统也没有的「裸机」变成用于训练LLM的计算机集群并不是一个轻松的过程,充满了探索和试错,但Imbue最终成功训练了一个700亿参数的LLM,并在此过程中积累

检索增强式生成(RAG)是一种使用检索提升语言模型的技术。具体来说,就是在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程。这种技术能极大提升内容的准确性和相关性,并能有效缓解幻觉问题,提高知识更新的速度,并增强内容生成的可追溯性。RAG无疑是最激动人心的人工智能研究领域之一。有关RAG的更多详情请参阅本站专栏文章《专补大模型短板的RAG有哪些新进展?这篇综述讲明白了》。但RAG也并非完美,用户在使用时也常会遭遇一些「痛点」。近日,英伟达生成式AI高级解决

机器之能报道编辑:杨文以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人工智能使用案例,来具体介绍AI使用方法,并激发大家思考。我们也欢迎读者投稿亲自实践的创新型用例。视频链接:https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ最近,独居女孩的生活Vlog在小红书上走红。一个插画风格的动画,再配上几句治愈系文案,短短几天就能轻松狂揽上
