用Oracle并行查询发挥多CPU的威力
用Oracle并行查询发挥多CPU的威力
正在看的ORACLE教程是:用Oracle并行查询发挥多CPU的威力。参数让我们进一步看看CPU的数量是如何影响这些参数的。
参数fast_start_parallel_rollback
Oracle并行机制中一个令人兴奋之处是在系统崩溃时调用并行回滚得能力。当Oracle数据库发生少有的崩溃时,Oracle能自动检测未完成的事务并回滚到起始状态。这被称为并行热启动,而Oracle使用基于cpu_count的fast_start_parallel_rollback参数来决定未完成事务的秉性程度。
并行数据操纵语言(DML)恢复能够在Oracle数据库崩溃后极大地加快其重新启动的速度。此参数的默认值是系统CPU数量的两倍,但是一些DBA们认为应该将这个值设置为cpu_count的四倍。
参数parallel_max_servers_parameter
Oracle一个显著的加强是自动决定OPQ并行的程度。由于Oracle清楚服务器中CPU的数量,它会自动分配合适的子进程的数量来提升并行查询的响应时间。当然,会有其它的外部因素,比如表的划分以及磁盘输入/输出子系统的布局等,但是根据cpu_count来设置parallel_max_servers参数将给Oracle一个合理的依据来选择并行的程度。
由于Oracle的并行操作严重依赖服务器上CPU的数量,parallel_max_servers会被设置成服务器上CPU的数量。如果在一台服务器上运行多个实例,则默认值太大了,会导致过度的页面交换和严重的CPU负担。并行的程度还依赖于目标表中分区的数量,因此parallel_max_servers应该设置成足够大以允许Oracle为每个查询选择最佳数量的并行子查询。
参数log_buffer
参数log_buffer定义了供即刻写入redo日志信息的保留RAM的数量,这个参数受cpu_count的影响。Oracle推荐log_buffer最大为cpu_count乘以500KB或128KB。CPU的数量对于log_buffer来说非常重要,因为Oracle会生成多日志写入(LGWR)进程来异步释放redo信息。
log_buffer是Oracle中最易误解的的RAM参数之一,通常存在下面几个配置错误:
log_buffer被设置得太高(例如,大于1MB),这回引起性能问题,因为大容量的结果会使得写入同步进行(例如,日志同步等待事件非常高)。
log_buffer 在一个单独的服务器中安装更多的CPU成为目前的一个趋势。使用对称多处理服务器(SMP)的情况下,一个Oracle服务器拥有8个、16个或32个CPU以及几吉比特RAM的SGA都不足为奇。
Oracle跟上了硬件发展的步伐,提供了很多面向多CPU的功能。从Oracle8i开始,Oracle在每个数据库函数中都实现了并行性,包括SQL访问(全表检索)、并行数据操作和并行恢复。对于Oracle专业版的挑战是为用户的数据库配置尽可能多的CPU。
在Oracle环境中实现并行性最好的方法之一是使用Oracle并行查询(OPQ)。我将讨论OPQ是如何工作的和怎样用它来提升大的全表检索的响应时间以及调用并行事务回滚等等。
使用OPQ
当在Oracle中进行一次合法的、大型的全表检索时,OPQ能够极大地提高响应时间。通过OPQ,Oracle将表划分成如图A所示的逻辑块。
图 A
由OPQ划分的表
一旦表被划分成块,Oracle启用并行的子查询(有时称为杂务进程),每个子查询同时读取一个大型表中的一块。所有子查询完毕以后,Oracle将结果会传给并行查询调度器,它会重新安排数据,如果需要则进行排序,并且将结果传递给最终用户。OPQ具有无限的伸缩性,因此,以前需要花费几分钟的全表检索现在的响应时间却不到1秒。
OPQ严重依赖于处理器的数量,通过并行运行之所以可以极大地提升全表检索的性能,其前提就是使用了N-1个并行进程(N=Oracle服务器上CPU的数量)。
必须注意非常重要的一点,即Oracle9i能够自动检测外部环境,包括服务器上CPU的数量。在安装时,Oracle9i会检查服务器上CPU的数量,设置一个名为cpu_count的参数,并使用cpu_count作为默认的初始化输入参数。这些初始化参数会影响到Oracle对内部查询的处理。
下面就是Orale在安装时根据cpu_count而设置的一些参数:
- fast_start_parallel_rollback
- parallel_max_servers
- log_buffer
- db_block_lru_latches
[NextPage]
不是db_block_size的倍数。在的Oracle9i中,log_buffer应该是2048字节的倍数。
参数db_block_lru_latches
LRU锁的数量是在Oracle数据库内部用来管理数据库缓冲的,这严重依赖于服务器上CPU的数量。
很多聪明的Oracle9i的DBA使用多冲数据缓冲(例如db_32k_cache_size),他们推荐将这个未公开声明的参数重设置为默认的最大值。db_block_lru_latches参数在Oracle8i中使用得很多,但是在Oracle9i中变成了一个未公开声明的参数,因为Oracle现在根据数据库拥有的CPU数量设置了一个合理的默认值。
db_block_lru_latches默认被设置为服务器上cpu_count的一半(例如服务器上只有一个Oracle数据库)。Oracle推荐db_block_lru_latches千万不要超过cpu_count的两倍或三倍,或db_block_buffers的五十分之一。
如果使用多缓冲池则这种计算方法有一个问题,因为不能控制分配给每个数据缓冲池的锁的数量。如果db_writers参数大于1,则默认值或许显得太小。
加强服务器
Oracle数据库总是在提升性能,根据外部服务器环境检测cpu_count和基本参数设置的能力对于Oracle软件来说是一个重要的加强。
随着更多的Oracle系统转移到SMP上来,当客户要采取增强措施并将众多的数据库转移到拥有32个或64个CPU的巨大服务器上来的时候,这些参数显得愈发重要。
上一页

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

MySQL支持四种索引类型:B-Tree、Hash、Full-text和Spatial。1.B-Tree索引适用于等值查找、范围查询和排序。2.Hash索引适用于等值查找,但不支持范围查询和排序。3.Full-text索引用于全文搜索,适合处理大量文本数据。4.Spatial索引用于地理空间数据查询,适用于GIS应用。
