python脚本监控docker容器
本文实例为大家分享了python脚本监控docker容器的方法,供大家参考,具体内容如下
脚本功能:
1、监控CPU使用率
2、监控内存使用状况
3、监控网络流量
具体代码:
#!/usr/bin/env python # --*-- coding:UTF-8 --*-- import sys import tab import re import os import time from docker import Client import commands keys_container_stats_list = ['blkio_stats', 'precpu_stats', 'Network', 'read', 'memory_stats', 'cpu_stats'] merit_list=['usage','limit','mem_use_percent','total_cpu_usage','system_cpu_usage','cpu_usage_percent','rx_bytes','tx_bytes'] returnval = None def start(container_name): global container_stats conn=Client(base_url='unix://run/docker.sock',version='1.19') generator=conn.stats(container_name) try: container_stats=eval(generator.next()) except NameError,error_msg: pass # print error_msg container_stats=eval(generator.next()) finally: conn.close() def monitor_docker(monitor_item,merit): if merit == 'mem_use_percent': start(container_name) mem_usage = container_stats['memory_stats']['usage'] mem_limit = container_stats['memory_stats']['limit'] returnval = round(float(mem_usage) / float(mem_limit),2) print returnval elif merit == 'system_cpu_usage': start(container_name) first_result = container_stats['cpu_stats']['system_cpu_usage'] start(container_name) second_result = container_stats['cpu_stats']['system_cpu_usage'] returnval = second_result - first_result print returnval elif merit == 'total_cpu_usage': start(container_name) first_result = container_stats['cpu_stats']['cpu_usage']['total_usage'] start(container_name) second_result = container_stats['cpu_stats']['cpu_usage']['total_usage'] returnval = second_result - first_result print returnval elif merit == 'cpu_usage_percent': start(container_name) system_use=container_stats['cpu_stats']['system_cpu_usage'] total_use=container_stats['cpu_stats']['cpu_usage']['total_usage'] cpu_count=len(container_stats['cpu_stats']['cpu_usage']['percpu_usage']) returnval = round((float(total_use)/float(system_use))*cpu_count*100.0,2) print returnval elif merit == 'rx_bytes': command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' ''' result_one = commands.getoutput(command) time.sleep(1) command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' ''' result_second = commands.getoutput(command) returnval = round((int(result_second) - int(result_one))/1024,2) print returnval elif merit == 'tx_bytes': command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' ''' result_one = commands.getoutput(command) time.sleep(1) command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' ''' result_second = commands.getoutput(command) returnval = round((int(result_second) - int(result_one))/1024,2) print returnval if __name__ == '__main__': command='''docker ps | awk '{print $NF}'| grep -v "NAMES"''' str=commands.getoutput(command) container_counts_list=str.split('\n') if sys.argv[1] not in container_counts_list: print container_counts_list print "你输入的容器名称错误,请重新执行脚本,并输入上述正确的容器名称." sys.exit(1) else: container_name = sys.argv[1] if sys.argv[2] not in keys_container_stats_list: print keys_container_stats_list print '你输入的容器监控项不在监控范围,请重新执行脚本,并输入上述正确的监控项.' sys.exit(1) else: monitor_item = sys.argv[2] if sys.argv[3] not in merit_list: print merit_list print "你输入的容器监控明细详细不在监控范围内,请重新执行脚本,并输入上述正确的明细监控指标." else: merit = sys.argv[3] monitor_docker(monitor_item,merit)
以上就是python脚本监控docker容器的全部代码,希望对大家的学习有所帮助。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

Visual Studio Code (VSCode) 是一款跨平台、开源且免费的代码编辑器,由微软开发。它以轻量、可扩展性和对众多编程语言的支持而著称。要安装 VSCode,请访问官方网站下载并运行安装程序。使用 VSCode 时,可以创建新项目、编辑代码、调试代码、导航项目、扩展 VSCode 和管理设置。VSCode 适用于 Windows、macOS 和 Linux,支持多种编程语言,并通过 Marketplace 提供各种扩展。它的优势包括轻量、可扩展性、广泛的语言支持、丰富的功能和版

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。 Golang以其并发模型和高效性能着称,Python则以简洁语法和丰富库生态系统着称。
