首页 后端开发 Python教程 详解Python迭代和迭代器

详解Python迭代和迭代器

Jun 10, 2016 pm 03:05 PM

我们将要来学习python的重要概念迭代和迭代器,通过简单实用的例子如列表迭代器和xrange。

可迭代

一个对象,物理或者虚拟存储的序列。list,tuple,strins,dicttionary,set以及生成器对象都是可迭代的,整型数是不可迭代的。如果你不确定哪个可迭代哪个不可以,你需要用python内建的iter()来帮忙。

>>> iter([1,2,3])
<listiterator object at 0x026C8970>

>>> iter({1:2, 2:4})
<dictionary-keyiterator object at 0x026CC1B0>

>>> iter(1234)
Traceback (most recent call last):
 File "<pyshell#145>", line 1, in <module>
  iter(1234)
TypeError: 'int' object is not iterable

登录后复制

iter()为list返回了listiterator对象,为dictionary返回了dictionary-keyiterator对象。类似对其他可迭代类型也会返回迭代器对象。

iter()用在自定义的类型会怎样呢?我们先自己定义一个String类:

class String(object):
 def __init__(self, val):
  self.val = val
 def __str__(self):
  return self.val
st = String('sample string')
登录后复制

那么,st是可迭代的吗?

>>> iter(st)

TypeError: 'String' object is not iterable

登录后复制

你可能会有几个问题要问:

怎么让自定义的类型可迭代?
iter()究竟做了些什么?
让我们补充String类来找找答案

class String(object):
  def __init__(self, val):
    self.val = val
  def __str__(self):
    return self.val
  def __iter__(self):
    print "This is __iter__ method of String class"
    return iter(self.val) #self.val is python string so iter() will return it's iterator
>>> st = String('Sample String')
>>> iter(st)
This is __iter__ method of String class
<iterator object at 0x026C8150>
登录后复制

在String类中需要一个'__iter__'方法把String类型变成可迭代的,这就是说'iter'内部调用了'iterable.__iter__()'

别急,不是只有增加'__iter()'方法这一种途径

class String(object):
  def __init__(self, val):
    self.val = val
  def __str__(self):
    return self.val
  def __getitem__(self, index):
    return self.val[index]
>>> st = String('Sample String')
>>> iter(st)
<iterator object at 0x0273AC10>
登录后复制

‘itr'也会调用'iterable.__getitem__()',所以我们用'__getitem__'方法让String类型可迭代。

如果在String类中同时使用'__iter__()'和'__getitem__()',就只有'__iter__'会起作用。

自动迭代

for循环会自动迭代

for x in iterable:
  print x
登录后复制

我们可以不用for循环来实现吗?

def iterate_while(iterable):
  index = 0
  while(i< len(iterable)):
    print iterable[i]
    i +=1
登录后复制

这样做对list和string是管用的,但对dictionary不会奏效,所以这绝对不是python式的迭代,也肯定不能模拟for循环的功能。我们先看迭代器,等下回再过头来。

迭代器

关于迭代器先说几条………..

1. 迭代器对象在迭代过程中会会产生可迭代的值,`next()`或者`__next()__`是迭代器用来产生下一个值的方法。
2. 它会在迭代结束后发出StopIteration异常。
3. `iter()`函数返回迭代器对象
4. 如果`iter()`函数被用在迭代器对象,它会返回对象本身
我们试一试模仿for循环

def simulate_for_loop(iterable):
  it = iter(iterable)
  while(True):
 try:
   print next(it)
 except StopIteration:
   break
>>> simulate_for_loop([23,12,34,56])
23
12
34
56
登录后复制

前面我们看过了iterable类,我们知道iter会返回迭代器对象。

现在我们试着理解迭代器类的设计。

class Iterator:
  def __init__(self, iterable)
    self.iterable = iterable
  .
  .
  def __iter__(self): #iter should return self if called on iterator
    return self
  def next(self): #Use __next__() in python 3.x
    if condition: #it should raise StopIteration exception if no next element is left to return
      raise StopIteration
登录后复制

我们学了够多的迭代和迭代器,在python程序中不会用到比这更深的了。

但是为了学习的目的我们就到这儿。。。。

列表迭代器

你可能会在面试中写这个,所以打起精神来注意了

class list_iter(object):
  def __init__(self, list_data):
    self.list_data = list_data
    self.index = 0
  def __iter__(self):
    return self
  def next(self):  #Use __next__ in python 3.x
    if self.index < len(self.list_data):
      val = self.list_data[self.index]
      self.index += 1 
      return val
    else:
      raise StopIteration()
登录后复制

我们来用`list_iter`自己定义一个列表迭代器

class List(object):
  def __init__(self, val):
    self.val = val
  def __iter__(self):
    return list_iter(self.val)
>>> ls = List([1,2,34])
>>> it = iter(ls)
>>> next(it)
1
>>> next(it)
2
>>> next(it)
34
>>> next(it)

Traceback (most recent call last):
 File "<pyshell#254>", line 1, in <module>
  next(it)
 File "<pyshell#228>", line 13, in next
  raise StopIteration()
StopIteration
登录后复制

xrange

从一个问题开始——xrange是迭代还是迭代器?

我们来看看

>>> x = xrange(10)
>>> type(x)
<type 'xrange'>
登录后复制

几个关键点:

1. `iter(xrange(num))`应该被支持
2. 如果`iter(xrange(num))`返回同样的对象(xrange类型)那xrange就是迭代器
3. 如果`iter(xrange(num))`返回一个迭代器对象那xrange就是迭代

>>> iter(xrange(10))
<rangeiterator object at 0x0264EFE0>
登录后复制

它返回了rangeiterator,所以我们完全可以叫它迭代器。

让我们用最少的xrange函数实现自己的xrange

xrange_iterator

class xrange_iter(object):
  def __init__(self, num):
    self.num = num
    self.start = 0
  def __iter__(self):
    return self
  def next(self):
    if self.start < self.num:
      val = self.start
      self.start += 1
      return val
    else:
      raise StopIteration()
登录后复制

my xrange

class my_xrange(object):
  def __init__(self, num):
    self.num = num
  def __iter__(self):
    return xrange_iter(self.num)
>>> for x in my_xrange(10):
 print x,

0 1 2 3 4 5 6 7 8 9

登录后复制

以上就是本文的全部内容,希望对大家学习掌握Python迭代和迭代器有所帮助。

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何使用Python查找文本文件的ZIPF分布 如何使用Python查找文本文件的ZIPF分布 Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

python中的图像过滤 python中的图像过滤 Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

我如何使用美丽的汤来解析HTML? 我如何使用美丽的汤来解析HTML? Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python中的平行和并发编程简介 Python中的平行和并发编程简介 Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何使用TensorFlow或Pytorch进行深度学习? 如何使用TensorFlow或Pytorch进行深度学习? Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

如何在Python中实现自己的数据结构 如何在Python中实现自己的数据结构 Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

python对象的序列化和避难所化:第1部分 python对象的序列化和避难所化:第1部分 Mar 08, 2025 am 09:39 AM

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python中的数学模块:统计 Python中的数学模块:统计 Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

See all articles