Python装饰器入门学习教程(九步学习)
装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。
这是在Python学习小组上介绍的内容,现学现卖、多练习是好的学习方式。
第一步:最简单的函数,准备附加额外功能
# -*- coding:gbk -*- '''示例1: 最简单的函数,表示调用了两次''' def myfunc(): print("myfunc() called.") myfunc() myfunc()
第二步:使用装饰函数在函数执行前和执行后分别附加额外功能
# -*- coding:gbk -*- '''示例2: 替换函数(装饰) 装饰函数的参数是被装饰的函数对象,返回原函数对象 装饰的实质语句: myfunc = deco(myfunc)''' def deco(func): print("before myfunc() called.") func() print(" after myfunc() called.") return func def myfunc(): print(" myfunc() called.") myfunc = deco(myfunc) myfunc() myfunc()
第三步:使用语法糖@来装饰函数
# -*- coding:gbk -*- '''示例3: 使用语法糖@来装饰函数,相当于“myfunc = deco(myfunc)” 但发现新函数只在第一次被调用,且原函数多调用了一次''' def deco(func): print("before myfunc() called.") func() print(" after myfunc() called.") return func @deco def myfunc(): print(" myfunc() called.") myfunc() myfunc()
第四步:使用内嵌包装函数来确保每次新函数都被调用
# -*- coding:gbk -*- '''示例4: 使用内嵌包装函数来确保每次新函数都被调用, 内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象''' def deco(func): def _deco(): print("before myfunc() called.") func() print(" after myfunc() called.") # 不需要返回func,实际上应返回原函数的返回值 return _deco @deco def myfunc(): print(" myfunc() called.") return 'ok' myfunc() myfunc()
第五步:对带参数的函数进行装饰
# -*- coding:gbk -*- '''示例5: 对带参数的函数进行装饰, 内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象''' def deco(func): def _deco(a, b): print("before myfunc() called.") ret = func(a, b) print(" after myfunc() called. result: %s" % ret) return ret return _deco @deco def myfunc(a, b): print(" myfunc(%s,%s) called." % (a, b)) return a + b myfunc(1, 2) myfunc(3, 4)
第六步:对参数量不确定的函数进行装饰
# -*- coding:gbk -*- '''示例6: 对参数数量不确定的函数进行装饰, 参数用(*args, **kwargs),自动适应变参和命名参数''' def deco(func): def _deco(*args, **kwargs): print("before %s called." % func.__name__) ret = func(*args, **kwargs) print(" after %s called. result: %s" % (func.__name__, ret)) return ret return _deco @deco def myfunc(a, b): print(" myfunc(%s,%s) called." % (a, b)) return a+b @deco def myfunc2(a, b, c): print(" myfunc2(%s,%s,%s) called." % (a, b, c)) return a+b+c myfunc(1, 2) myfunc(3, 4) myfunc2(1, 2, 3) myfunc2(3, 4, 5)
第七步:让装饰器带参数
# -*- coding:gbk -*- '''示例7: 在示例4的基础上,让装饰器带参数, 和上一示例相比在外层多了一层包装。 装饰函数名实际上应更有意义些''' def deco(arg): def _deco(func): def __deco(): print("before %s called [%s]." % (func.__name__, arg)) func() print(" after %s called [%s]." % (func.__name__, arg)) return __deco return _deco @deco("mymodule") def myfunc(): print(" myfunc() called.") @deco("module2") def myfunc2(): print(" myfunc2() called.") myfunc() myfunc2()
第八步:让装饰器带 类 参数
# -*- coding:gbk -*- '''示例8: 装饰器带类参数''' class locker: def __init__(self): print("locker.__init__() should be not called.") @staticmethod def acquire(): print("locker.acquire() called.(这是静态方法)") @staticmethod def release(): print(" locker.release() called.(不需要对象实例)") def deco(cls): '''cls 必须实现acquire和release静态方法''' def _deco(func): def __deco(): print("before %s called [%s]." % (func.__name__, cls)) cls.acquire() try: return func() finally: cls.release() return __deco return _deco @deco(locker) def myfunc(): print(" myfunc() called.") myfunc() myfunc()
第九步:装饰器带类参数,并分拆公共类到其他py文件中,同时演示了对一个函数应用多个装饰器
# -*- coding:gbk -*- '''mylocker.py: 公共类 for 示例9.py''' class mylocker: def __init__(self): print("mylocker.__init__() called.") @staticmethod def acquire(): print("mylocker.acquire() called.") @staticmethod def unlock(): print(" mylocker.unlock() called.") class lockerex(mylocker): @staticmethod def acquire(): print("lockerex.acquire() called.") @staticmethod def unlock(): print(" lockerex.unlock() called.") def lockhelper(cls): '''cls 必须实现acquire和release静态方法''' def _deco(func): def __deco(*args, **kwargs): print("before %s called." % func.__name__) cls.acquire() try: return func(*args, **kwargs) finally: cls.unlock() return __deco return _deco # -*- coding:gbk -*-
'''示例9: 装饰器带类参数,并分拆公共类到其他py文件中
同时演示了对一个函数应用多个装饰器'''
from mylocker import * class example: @lockhelper(mylocker) def myfunc(self): print(" myfunc() called.") @lockhelper(mylocker) @lockhelper(lockerex) def myfunc2(self, a, b): print(" myfunc2() called.") return a + b if __name__=="__main__": a = example() a.myfunc() print(a.myfunc()) print(a.myfunc2(1, 2)) print(a.myfunc2(3, 4))
以上给大家分享了Python装饰器入门学习教程(九步学习),希望对大家有所帮助。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
