首页 后端开发 Python教程 八大排序算法的Python实现

八大排序算法的Python实现

Jun 10, 2016 pm 03:06 PM
python 排序算法

Python实现八大排序算法,具体内容如下

1、插入排序
描述

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

def insert_sort(lists):
  # 插入排序
  count = len(lists)
  for i in range(1, count):
    key = lists[i]
    j = i - 1
    while j >= 0:
      if lists[j] > key:
        lists[j + 1] = lists[j]
        lists[j] = key
      j -= 1
  return lists
登录后复制

2、希尔排序
描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

代码实现

def shell_sort(lists):
  # 希尔排序
  count = len(lists)
  step = 2
  group = count / step
  while group > 0:
    for i in range(0, group):
      j = i + group
      while j < count:
        k = j - group
        key = lists[j]
        while k >= 0:
          if lists[k] > key:
            lists[k + group] = lists[k]
            lists[k] = key
          k -= group
        j += group
    group /= step
  return lists
登录后复制

3、冒泡排序
描述

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

def bubble_sort(lists):
  # 冒泡排序
  count = len(lists)
  for i in range(0, count):
    for j in range(i + 1, count):
      if lists[i] > lists[j]:
        lists[i], lists[j] = lists[j], lists[i]
  return lists
登录后复制

4、快速排序
描述

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

def quick_sort(lists, left, right):
  # 快速排序
  if left >= right:
    return lists
  key = lists[left]
  low = left
  high = right
  while left < right:
    while left < right and lists[right] >= key:
      right -= 1
    lists[left] = lists[right]
    while left < right and lists[left] <= key:
      left += 1
    lists[right] = lists[left]
  lists[right] = key
  quick_sort(lists, low, left - 1)
  quick_sort(lists, left + 1, high)
  return lists
登录后复制

5、直接选择排序
描述

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

def select_sort(lists):
  # 选择排序
  count = len(lists)
  for i in range(0, count):
    min = i
    for j in range(i + 1, count):
      if lists[min] > lists[j]:
        min = j
    lists[min], lists[i] = lists[i], lists[min]
  return lists
登录后复制

6、堆排序
描述

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

# 调整堆
def adjust_heap(lists, i, size):
  lchild = 2 * i + 1
  rchild = 2 * i + 2
  max = i
  if i < size / 2:
    if lchild < size and lists[lchild] > lists[max]:
      max = lchild
    if rchild < size and lists[rchild] > lists[max]:
      max = rchild
    if max != i:
      lists[max], lists[i] = lists[i], lists[max]
      adjust_heap(lists, max, size)

# 创建堆
def build_heap(lists, size):
  for i in range(0, (size/2))[::-1]:
    adjust_heap(lists, i, size)

# 堆排序
def heap_sort(lists):
  size = len(lists)
  build_heap(lists, size)
  for i in range(0, size)[::-1]:
    lists[0], lists[i] = lists[i], lists[0]
    adjust_heap(lists, 0, i)

登录后复制

7、归并排序
描述

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

def merge(left, right):
  i, j = 0, 0
  result = []
  while i < len(left) and j < len(right):
    if left[i] <= right[j]:
      result.append(left[i])
      i += 1
    else:
      result.append(right[j])
      j += 1
  result += left[i:]
  result += right[j:]
  return result

def merge_sort(lists):
  # 归并排序
  if len(lists) <= 1:
    return lists
  num = len(lists) / 2
  left = merge_sort(lists[:num])
  right = merge_sort(lists[num:])
  return merge(left, right)

登录后复制

8、基数排序
描述

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

import math
def radix_sort(lists, radix=10):
  k = int(math.ceil(math.log(max(lists), radix)))
  bucket = [[] for i in range(radix)]
  for i in range(1, k+1):
    for j in lists:
      bucket[j/(radix**(i-1)) % (radix**i)].append(j)
    del lists[:]
    for z in bucket:
      lists += z
      del z[:]
  return lists
登录后复制

以上就是Python实现八大排序算法的详细介绍,希望对大家的学习有所帮助。

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C语言 sum 的作用是什么? C语言 sum 的作用是什么? Apr 03, 2025 pm 02:21 PM

C语言中没有内置求和函数,需自行编写。可通过遍历数组并累加元素实现求和:循环版本:使用for循环和数组长度计算求和。指针版本:使用指针指向数组元素,通过自增指针遍历高效求和。动态分配数组版本:动态分配数组并自行管理内存,确保释放已分配内存以防止内存泄漏。

手机上如何将XML转换成PDF? 手机上如何将XML转换成PDF? Apr 02, 2025 pm 10:18 PM

直接在手机上将XML转换为PDF并不容易,但可以借助云端服务实现。推荐使用轻量级手机App上传XML文件并接收生成的PDF,配合云端API进行转换。云端API使用无服务器计算服务,选择合适的平台至关重要。处理XML解析和PDF生成时需要考虑复杂性、错误处理、安全性和优化策略。整个过程需要前端App与后端API协同工作,需要对多种技术有所了解。

xml怎么转换成图片 xml怎么转换成图片 Apr 03, 2025 am 07:39 AM

可以将 XML 转换为图像,方法是使用 XSLT 转换器或图像库。XSLT 转换器:使用 XSLT 处理器和样式表,将 XML 转换为图像。图像库:使用 PIL 或 ImageMagick 等库,从 XML 数据创建图像,例如绘制形状和文本。

谁得到更多的Python或JavaScript? 谁得到更多的Python或JavaScript? Apr 04, 2025 am 12:09 AM

Python和JavaScript开发者的薪资没有绝对的高低,具体取决于技能和行业需求。1.Python在数据科学和机器学习领域可能薪资更高。2.JavaScript在前端和全栈开发中需求大,薪资也可观。3.影响因素包括经验、地理位置、公司规模和特定技能。

xml怎么转换成mp3 xml怎么转换成mp3 Apr 03, 2025 am 09:00 AM

XML 转换为 MP3 的步骤包括:从 XML 中提取音频数据:解析 XML 文件,找到包含音频数据的 base64 编码串,并解码为二进制格式。将音频数据编码为 MP3:安装 MP3 编码器并设置编码参数,将二进制音频数据编码为 MP3 格式,然后保存到文件中。

xml怎么改格式 xml怎么改格式 Apr 03, 2025 am 08:42 AM

可以采用多种方法修改 XML 格式:使用文本编辑器(如 Notepad )进行手工编辑;使用在线或桌面 XML 格式化工具(如 XMLbeautifier)进行自动格式化;使用 XML 转换工具(如 XSLT)定义转换规则;或者使用编程语言(如 Python)进行解析和操作。修改时需谨慎,并备份原始文件。

distinctIdistinguish有关系吗 distinctIdistinguish有关系吗 Apr 03, 2025 pm 10:30 PM

distinct 和 distinguish 虽都与区分有关,但用法不同:distinct(形容词)描述事物本身的独特性,用于强调事物之间的差异;distinguish(动词)表示区分行为或能力,用于描述辨别过程。在编程中,distinct 常用于表示集合中元素的唯一性,如去重操作;distinguish 则体现在算法或函数的设计中,如区分奇数和偶数。优化时,distinct 操作应选择合适的算法和数据结构,而 distinguish 操作应优化区分逻辑效率,并注意编写清晰可读的代码。

xml如何修改数据 xml如何修改数据 Apr 03, 2025 am 08:12 AM

XML 数据修改可以通过手动操作或使用编程语言和库来完成。手动修改适用于小型文档的少量修改,包括添加、修改或删除元素和属性。对于更复杂的修改,可以使用编程语言和库,如 Python 的 xml.dom 和 Java 的 javax.xml.parsers,它们提供了处理 XML 数据的工具。修改 XML 数据时,确保其有效性,创建备份并遵循 XML 语法规则,包括正确的标签和属性。

See all articles