首页 后端开发 Python教程 Python的MongoDB模块PyMongo操作方法集锦

Python的MongoDB模块PyMongo操作方法集锦

Jun 10, 2016 pm 03:06 PM
mongodb python

开始之前当然要导入模块啦:

>>> import pymongo
登录后复制

下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。

建立于MongoClient 的连接:

client = MongoClient('localhost', 27017)
# 或者
client = MongoClient('mongodb://localhost:27017/')
登录后复制

得到数据库:

>>> db = client.test_database
# 或者
>>> db = client['test-database']
登录后复制

得到一个数据集合:

collection = db.test_collection
# 或者
collection = db['test-collection']
登录后复制

MongoDB中的数据使用的是类似Json风格的文档:

>>> import datetime
>>> post = {"author": "Mike",
...     "text": "My first blog post!",
...     "tags": ["mongodb", "python", "pymongo"],
...     "date": datetime.datetime.utcnow()}
登录后复制

插入一个文档:

>>> posts = db.posts
>>> post_id = posts.insert_one(post).inserted_id
>>> post_id
ObjectId('...')
登录后复制

找一条数据:

>>> posts.find_one()
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Mike"})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Eliot"})
>>>

登录后复制

通过ObjectId来查找:

>>> post_id
ObjectId(...)
>>> posts.find_one({"_id": post_id})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
登录后复制

不要转化ObjectId的类型为String:

>>> post_id_as_str = str(post_id)
>>> posts.find_one({"_id": post_id_as_str}) # No result
>>>
登录后复制

如果你有一个post_id字符串,怎么办呢?

from bson.objectid import ObjectId

# The web framework gets post_id from the URL and passes it as a string
def get(post_id):
  # Convert from string to ObjectId:
  document = client.db.collection.find_one({'_id': ObjectId(post_id)})

登录后复制

多条插入:

>>> new_posts = [{"author": "Mike",
...        "text": "Another post!",
...        "tags": ["bulk", "insert"],
...        "date": datetime.datetime(2009, 11, 12, 11, 14)},
...       {"author": "Eliot",
...        "title": "MongoDB is fun",
...        "text": "and pretty easy too!",
...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]
>>> result = posts.insert_many(new_posts)
>>> result.inserted_ids
[ObjectId('...'), ObjectId('...')]
登录后复制

查找多条数据:

>>> for post in posts.find():
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
登录后复制

当然也可以约束查找条件:

>>> for post in posts.find({"author": "Mike"}):
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
登录后复制

获取集合的数据条数:

>>> posts.count()
登录后复制

或者说满足某种查找条件的数据条数:

>>> posts.find({"author": "Mike"}).count()
登录后复制

范围查找,比如说时间范围:

>>> d = datetime.datetime(2009, 11, 12, 12)
>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):
...  print post
...
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
登录后复制

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BasicCursor'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
登录后复制

建立索引:

>>> from pymongo import ASCENDING, DESCENDING
>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]


登录后复制

连接聚集

>>> account = db.Account
#或 
>>> account = db["Account"]
登录后复制

查看全部聚集名称

>>> db.collection_names()
登录后复制

查看聚集的一条记录

>>> db.Account.find_one()
 

>>> db.Account.find_one({"UserName":"keyword"})

登录后复制

查看聚集的字段

>>> db.Account.find_one({},{"UserName":1,"Email":1})
{u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'}
 

>>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0})
{u'UserName': u'libing', u'Email': u'libing@35.cn'}

登录后复制

查看聚集的多条记录

>>> for item in db.Account.find():
    item
 

>>> for item in db.Account.find({"UserName":"libing"}):
    item["UserName"]

登录后复制

查看聚集的记录统计

>>> db.Account.find().count()
 

>>> db.Account.find({"UserName":"keyword"}).count()

登录后复制

聚集查询结果排序

>>> db.Account.find().sort("UserName") #默认为升序
>>> db.Account.find().sort("UserName",pymongo.ASCENDING)  #升序
>>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序
登录后复制

聚集查询结果多列排序

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])
登录后复制

添加记录

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})
登录后复制

修改记录

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})
登录后复制

删除记录

>>> db.Account.remove()  -- 全部删除
 

>>> db.Test.remove({"UserName":"keyword"})
登录后复制

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS MongoDB备份策略是什么 CentOS MongoDB备份策略是什么 Apr 14, 2025 pm 04:51 PM

CentOS系统下MongoDB高效备份策略详解本文将详细介绍在CentOS系统上实施MongoDB备份的多种策略,以确保数据安全和业务连续性。我们将涵盖手动备份、定时备份、自动化脚本备份以及Docker容器环境下的备份方法,并提供备份文件管理的最佳实践。手动备份:利用mongodump命令进行手动全量备份,例如:mongodump-hlocalhost:27017-u用户名-p密码-d数据库名称-o/备份目录此命令会将指定数据库的数据及元数据导出到指定的备份目录。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

See all articles