首页 后端开发 Python教程 一波神奇的Python语句、函数与方法的使用技巧总结

一波神奇的Python语句、函数与方法的使用技巧总结

Jun 10, 2016 pm 03:07 PM
python 技巧

显示有限的接口到外部
当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import的类或者函数名, 可以起到限制的import的作用, 防止外部import其他函数或者类。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from base import APIBase
from client import Client
from decorator import interface, export, stream
from server import Server
from storage import Storage
from util import (LogFormatter, disable_logging_to_stderr,
            enable_logging_to_kids, info)
__all__ = ['APIBase', 'Client', 'LogFormatter', 'Server',
      'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
      'export', 'info', 'interface', 'stream']
登录后复制

with的魔力
with语句需要支持上下文管理协议的对象, 上下文管理协议包含__enter__和__exit__两个方法。 with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。

其中上下文表达式是跟在with之后的表达式, 该表达式返回一个上下文管理对象。

# 常见with使用场景
with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file,
  for line in my_file:
    print line

登录后复制

知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter__和__exit__方法。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class MyWith(object):
  def __init__(self):
    print "__init__ method"
  def __enter__(self):
    print "__enter__ method"
    return self # 返回对象给as后的变量
  def __exit__(self, exc_type, exc_value, exc_traceback):
    print "__exit__ method"
    if exc_traceback is None:
      print "Exited without Exception"
      return True
    else:
      print "Exited with Exception"
      return False
def test_with():
  with MyWith() as my_with:
    print "running my_with"
  print "------分割线-----"
  with MyWith() as my_with:
    print "running before Exception"
    raise Exception
    print "running after Exception"
if __name__ == '__main__':
  test_with()
登录后复制

执行结果如下:

__init__ method
__enter__ method
running my_with
__exit__ method
Exited without Exception
------分割线-----
__init__ method
__enter__ method
running before Exception
__exit__ method
Exited with Exception
Traceback (most recent call last):
 File "bin/python", line 34, in <module>
  exec(compile(__file__f.read(), __file__, "exec"))
 File "test_with.py", line 33, in <module>
  test_with()
 File "test_with.py", line 28, in test_with
  raise Exception
Exception
登录后复制

证明了会先执行__enter__方法, 然后调用with内的逻辑, 最后执行__exit__做退出处理, 并且, 即使出现异常也能正常退出

filter的用法
相对filter而言, map和reduce使用的会更频繁一些, filter正如其名字, 按照某种规则过滤掉一些元素。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
lst = [1, 2, 3, 4, 5, 6]
# 所有奇数都会返回True, 偶数会返回False被过滤掉
print filter(lambda x: x % 2 != 0, lst)
#输出结果
[1, 3, 5]
登录后复制

一行作判断
当条件满足时, 返回的为等号后面的变量, 否则返回else后语句。

lst = [1, 2, 3]
new_lst = lst[0] if lst is not None else None
print new_lst
# 打印结果
1
登录后复制

装饰器之单例
使用装饰器实现简单的单例模式

# 单例装饰器
def singleton(cls):
  instances = dict() # 初始为空
  def _singleton(*args, **kwargs):
    if cls not in instances: #如果不存在, 则创建并放入字典
      instances[cls] = cls(*args, **kwargs)
    return instances[cls]
  return _singleton
@singleton
class Test(object):
  pass
if __name__ == '__main__':
  t1 = Test()
  t2 = Test()
  # 两者具有相同的地址
  print t1, t2
登录后复制

staticmethod装饰器
类中两种常用的装饰, 首先区分一下他们:

普通成员函数, 其中第一个隐式参数为对象

  • classmethod装饰器, 类方法(给人感觉非常类似于OC中的类方法), 其中第一个隐式参数为类
  • staticmethod装饰器, 没有任何隐式参数. python中的静态方法类似与C++中的静态方法
#!/usr/bin/env python

# -*- coding: utf-8 -*-
class A(object):
  # 普通成员函数
  def foo(self, x):
    print "executing foo(%s, %s)" % (self, x)
  @classmethod  # 使用classmethod进行装饰
  def class_foo(cls, x):
    print "executing class_foo(%s, %s)" % (cls, x)
  @staticmethod # 使用staticmethod进行装饰
  def static_foo(x):
    print "executing static_foo(%s)" % x
def test_three_method():
  obj = A()
  # 直接调用噗通的成员方法
  obj.foo("para") # 此处obj对象作为成员函数的隐式参数, 就是self
  obj.class_foo("para") # 此处类作为隐式参数被传入, 就是cls
  A.class_foo("para") #更直接的类方法调用
  obj.static_foo("para") # 静态方法并没有任何隐式参数, 但是要通过对象或者类进行调用
  A.static_foo("para")
if __name__ == '__main__':
  test_three_method()
  
# 函数输出
executing foo(<__main__.A object at 0x100ba4e10>, para)
executing class_foo(<class '__main__.A'>, para)
executing class_foo(<class '__main__.A'>, para)
executing static_foo(para)
executing static_foo(para)

登录后复制

property装饰器
定义私有类属性
将property与装饰器结合实现属性私有化(更简单安全的实现get和set方法)。

#python内建函数
property(fget=None, fset=None, fdel=None, doc=None)
登录后复制

fget是获取属性的值的函数,fset是设置属性值的函数,fdel是删除属性的函数,doc是一个字符串(像注释一样)。从实现来看,这些参数都是可选的。

property有三个方法getter(), setter()和delete() 来指定fget, fset和fdel。 这表示以下这行:

class Student(object):
  @property #相当于property.getter(score) 或者property(score)
  def score(self):
    return self._score
  @score.setter #相当于score = property.setter(score)
  def score(self, value):
    if not isinstance(value, int):
      raise ValueError('score must be an integer!')
    if value < 0 or value > 100:
      raise ValueError('score must between 0 ~ 100!')
    self._score = value
登录后复制

iter魔法
通过yield和__iter__的结合,我们可以把一个对象变成可迭代的
通过__str__的重写, 可以直接通过想要的形式打印对象

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class TestIter(object):
  def __init__(self):
    self.lst = [1, 2, 3, 4, 5]
  def read(self):
    for ele in xrange(len(self.lst)):
      yield ele
  def __iter__(self):
    return self.read()
  def __str__(self):
    return ','.join(map(str, self.lst))
  
  __repr__ = __str__
def test_iter():
  obj = TestIter()
  for num in obj:
    print num
  print obj
if __name__ == '__main__':
  test_iter()
登录后复制

神奇partial
partial使用上很像C++中仿函数(函数对象)。

在stackoverflow给出了类似与partial的运行方式:

def partial(func, *part_args):
  def wrapper(*extra_args):
    args = list(part_args)
    args.extend(extra_args)
    return func(*args)
  return wrapper
登录后复制

利用用闭包的特性绑定预先绑定一些函数参数,返回一个可调用的变量, 直到真正的调用执行:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from functools import partial
def sum(a, b):
  return a + b
def test_partial():
  fun = partial(sum, 2)  # 事先绑定一个参数, fun成为一个只需要一个参数的可调用变量
  print fun(3) # 实现执行的即是sum(2, 3)
if __name__ == '__main__':
  test_partial()
  
# 执行结果
5
登录后复制

神秘eval
eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回。

看一下下面这个例子:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
  return 3
def test_second(num):
  return num
action = { # 可以看做是一个sandbox
    "para": 5,
    "test_first" : test_first,
    "test_second": test_second
    }
def test_eavl(): 
  condition = "para == 5 and test_second(test_first) > 5"
  res = eval(condition, action) # 解释condition并根据action对应的动作执行
  print res
if __name__ == '_
登录后复制

exec
exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值
exec和eval在执行代码时, 除了返回值其他行为都相同
在传入字符串时, 会使用compile(source, '', mode)编译字节码。 mode的取值为exec和eval

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
  print "hello"
def test_second():
  test_first()
  print "second"
def test_third():
  print "third"
action = {
    "test_second": test_second,
    "test_third": test_third
    }
def test_exec():
  exec "test_second" in action
if __name__ == '__main__':
  test_exec() # 无法看到执行结果
登录后复制

getattr
getattr(object, name[, default])返回对象的命名属性,属性名必须是字符串。如果字符串是对象的属性名之一,结果就是该属性的值。例如, getattr(x, ‘foobar') 等价于 x.foobar。 如果属性名不存在,如果有默认值则返回默认值,否则触发 AttributeError 。

# 使用范例
class TestGetAttr(object):
  test = "test attribute"
  def say(self):
    print "test method"
def test_getattr():
  my_test = TestGetAttr()
  try:
    print getattr(my_test, "test")
  except AttributeError:
    print "Attribute Error!"
  try:
    getattr(my_test, "say")()
  except AttributeError: # 没有该属性, 且没有指定返回值的情况下
    print "Method Error!"
if __name__ == '__main__':
  test_getattr()
  
# 输出结果
test attribute
test method
登录后复制

命令行处理

def process_command_line(argv):
  """
  Return a 2-tuple: (settings object, args list).
  `argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
  """
  if argv is None:
    argv = sys.argv[1:]
  # initialize the parser object:
  parser = optparse.OptionParser(
    formatter=optparse.TitledHelpFormatter(width=78),
    add_help_option=None)
  # define options here:
  parser.add_option(   # customized description; put --help last
    '-h', '--help', action='help',
    help='Show this help message and exit.')
  settings, args = parser.parse_args(argv)
  # check number of arguments, verify values, etc.:
  if args:
    parser.error('program takes no command-line arguments; '
           '"%s" ignored.' % (args,))
  # further process settings & args if necessary
  return settings, args
def main(argv=None):
  settings, args = process_command_line(argv)
  # application code here, like:
  # run(settings, args)
  return 0    # success
if __name__ == '__main__':
  status = main()
  sys.exit(status)
登录后复制

读写csv文件

# 从csv中读取文件, 基本和传统文件读取类似
import csv
with open('data.csv', 'rb') as f:
  reader = csv.reader(f)
  for row in reader:
    print row
# 向csv文件写入
import csv
with open( 'data.csv', 'wb') as f:
  writer = csv.writer(f)
  writer.writerow(['name', 'address', 'age']) # 单行写入
  data = [
      ( 'xiaoming ','china','10'),
      ( 'Lily', 'USA', '12')]
  writer.writerows(data) # 多行写入
登录后复制

各种时间形式转换
只发一张网上的图, 然后查文档就好了, 这个是记不住的

2015128155735251.jpg (739×549)

字符串格式化
一个非常好用, 很多人又不知道的功能:

>>> name = "andrew"
>>> "my name is {name}".format(name=name)
'my name is andrew'
登录后复制

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上如何进行PyTorch模型训练 CentOS上如何进行PyTorch模型训练 Apr 14, 2025 pm 03:03 PM

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

CentOS下PyTorch版本怎么选 CentOS下PyTorch版本怎么选 Apr 14, 2025 pm 02:51 PM

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles